69025

Модулированные сигналы. Сигналы угловой модуляции

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Термины частотная и фазовая модуляция справедливо ассоциируются с изменением по закону модулирующего колебания частоты или фазы исходного немодулированного колебания: Определим более подробно смысл этих изменений. Что же тогда изменение фазы если представить исходное...

Русский

2014-09-28

225.5 KB

2 чел.

Лекция 3.2

Тема 3. Модулированные сигналы.

Занятие 2. Сигналы угловой модуляции.

  1.  Общие свойства сигналов с угловой модуляцией.

Сигналы частотной модуляции.

Фазовая модуляция.

Спектры сигналов с УМ.

Учебные вопросы.

Общие свойства сигналов с угловой модуляцией.

Термины "частотная" и "фазовая" модуляция справедливо ассоциируются с изменением (по закону модулирующего колебания) частоты или фазы исходного, немодулированного колебания:

Определим более подробно смысл этих изменений.

Изменение частоты -- это скорость изменения фазы.

     (3.2.1)

Что же тогда изменение фазы?

если представить исходное, немодулированное колебание в виде неподвижного вектора , то приращение, изменение фазы  всякого другого (например, модулированного колебания ) сигнала можно трактовать как угол поворота вектора  относительно исходного  в момент .

Таким образом, понятия "фаза", "изменение фазы" существуют в конкретной системе отсчета. Вне системы отсчета говорить об этих понятиях нет смысла.

При равных амплитудах векторов мгновенное значение напряжения модулированного (по углу поворота вектора)  колебания  можно представить в виде:

   (3.2.2)

Выражение в квадратных скобках носит название полной фазы колебания :

    (3.2.3)

Значение приращения фазы можно определить из (3.2.1)

    (3.2.4)

В частности, при

    (3.2.5)

Это известное линейное изменение фазы: приращение фазы гармонического колебания относительно опорного, если разница частот модулированного и немодулированного колебания неизменна.

Термин “угловая модуляция” призван подчеркнуть глубокое внутреннее сходство упомянутых двух видов модуляции: ЧМ и ФМ.

В основе их — изменение по определенному закону, связанному с информативными признаками, фазы модулированного колебания относительно несущего колебания. Скорость изменения фазы есть изменение частоты, а изменение частоты приводит к изменению фазы.

Для изучения свойств сигналов ЧМ и ФМ воспользуемся уже известным набором исходных колебаний:

— несущая    (3.2.6)

— случайный первичный сигнал. (3.2.7)

— тональный сигнал.   (3.2.8)

Сигналы ЧМ.

В отличии от правила (3.1.2) для АМ в случае ЧМ мгновенная частота модулированного колебания может быть представлена в виде:

  (3.2.9)

где — крутизна частотного модулятора, то есть коэффициент пропорциональности между изменением мгновенно частоты относительно несущей и напряжением модулирующего колебания.

   (3.2.9а)

Полная фазы колебания соответственно запишется

 (3.2.10)

Следовательно, в соответствии с (3.2.3) сигнал ЧМ должен быть записан

 (3.2.11)

При модуляции тоном

  (3.2.12)

Судя по (3.2.12), в этом смысле отклонение фазы  от фазы несущей происходит по гармоническому закону:

    (3.2.13)

где     (3.2.13а)

индекс частотной модуляции, совпадающий количественно и по физическому смыслу с девиацией фазы ЧМ колебания при модуляции тоном.

Одновременно применение частоты описывается выражением:

   (3.2.13б)

    (3.2.13в)

Девиация частоты при ЧМ пропорциональна только амплитуде модулирующего колебания, а девиация фазы, (индекс угловой модуляции) пропорциональна амплитуде и обратно пропорциональна частоте модулирующего колебания.

Сигналы ФМ.

Для случая ФМ справедливо

(3.2.14)

С учетом (3.2.14) сигналы ФМ имеют вид:

  (3.2.15)

где — крутизна фазового модулятора, то есть коэффициент пропорциональности между изменением фазы и значением напряжения первичного сигнала.

Сопоставляя (3.2.15) и (3.2.11) можно видеть, что сигнал ЧМ можно получить и на выходе фазового модулятора (рис. 3.2.3в)

При модуляции тоном

  (3.2.15а)

где     (3.2.16)

  (3.2.16а)

    (3.2.16в)

Таким образом, при ФМ девиация фазы (индекс модуляции) пропорциональна только амплитуде модулирующего колебания, а девиация частоты пропорциональна как изменению амплитуды, так и изменению частоты модулирующего колебания.

Спектры сигналов с угловой модуляцией.

При модуляции тоном (периодическим сигналом) спектр сигналов угловой модуляции, очевидно, линейчатый. Основными свойствами этого спектра является:

симметрия относительно частоты ;

равенство интервала между составляющими линейчатого спектра частоте модулирующего колебания ;

однозначное определение амплитуд гармонических составляющих посредством единственного параметра — индекса угловой модуляции;

теоретически бесконечное количество составляющих спектра.

Правило определения амплитуд линейчатого спектра сигналов с угловой модуляцией.

Амплитуда любой (i-той) составляющей пропорциональна значению функции Бесселя первого рода i-того порядка для значения аргумента

— рис. 3.2.4

Для инструментального определения индекса ЧМ достаточно воспользоваться правилом:

,

то есть измерить девиацию частоты (девиаметром), частоту модулирующего колебания и вычислить их отношение.

Это правило справедливо для всех видов УМ.

Таким образом, преображение спектра однозначно связано со значениями индекса УМ. Поэтому вычислить индекс УМ можно непосредственно по изображению спектра (с меньшей точностью, чем при инструментальном методе).

Правило различения видов УМ по изображению спектра.

Чтобы различить сигналы ЧМ и ФМ необходимо изменить частоту модулирующего колебания. При этом в любом случае пропорционально изменится интервал между составляющими спектра. Однако при ФМ, ввиду независимости величины индекса  от частоты , амплитуда спектральных составляющих не измениться. При ЧМ изменится значение индекса модуляции и, следовательно, соотношения между амплитудами составляющих спектра.

Реальный спектр сигналов с УМ безусловно ограничен. В инженерной практике пользуются формулой для вычисления количества учитываемых составляющих реального спектра:

При модуляции случайным сигналом наибольшая ширина спектра обусловлена самой высокой частотной компонентой модулирующего сигнала .

С учетом свойств симметрии спектра его ширина определяется по формуле:

 (3.2.17)

Выражение (3.2.17) называется формулой Е. В. Манаева.

При  оказывается справедливым:

   (3.2.18)


 

А также другие работы, которые могут Вас заинтересовать

37497. Основные философские учения 1.95 MB
  Религиозноидеалистическая картина мира: эволюционный космизм тема 12 Природа человека и смысл его существования 12. Проблемы методологии научного познания в позитивизме и неопозитивизме тема 15 Современный философский иррационализм: решение проблем бытия познания человека и личности в различных школах и течениях 15. Вовторых мы считаем мудрым того кто способен познать трудное и нелегко постижимое для человека ведь воспринимание чувствами свойственно всем а потому это легко и ничего мудрого в этом нет. Но пожалуй труднее всего...
37498. ФИЛОСОФИЯ, ЛИТЕРАТУРА И ВОЕННАЯ СЛУЖБА. (отражение философских идей в литературно-художественном творчестве и военно-профессиональной деятельности офицера-ракетчика) 1.71 MB
  Сегодня к сожалению не так часто можно увидеть человека читающего книгу тем более философского содержания в транспорте на отдыхе Молодежь предпочитает иные источники информации электронные носители интернет плейеры айфоны забывая известную мудрость что всякое новое – хорошо забытое старое Свободный доступ к информации восприятие истины на веру без труда целенаправленное зомбироание сознания нового поколения поверхностное знание объективной реальности основанные на трафаретах клише массовой поликультуре порождают...
37499. Религиозная философия 46 KB
  Русская религиозная философия ориентирует человека на 1.становления человека 4.социализации человека 4.Гуманизм представляет собой философскую идею о томчто смысл бытия человекаэто 1.
37501. Философия. основные понятия 349 KB
  3 филое Отличается стремлением рационально объяснить мир. Философия как нкука ее предмет структура и фии. Первые фил. Фил.
37503. Философия. Ответы к экзамену 368.5 KB
  Осознание специфики человека. Все – животные растения объекты вроде Солнца и весны – рассматриваются как существа похожие на человека живущие и действующие так же как он. Философское произведение обращается не только к разуму но и к чувствам человека доставляет эстетическое переживание. Их объединяют в первую очередь рассматриваемые проблемы как устроен мир каково назначение человека как ему следует жить Принципиальное различие состоит в том что ф.
37504. Философия. Тесты 79.5 KB
  Социальнофилософским учением является 1.в этом проявляется безусловный рефлекс 4.Учение Платона о первичности мира идей вне зависимости от субъективного отношения к нему является 1.Основателем теории объясняющей роль бессознательного в жизни человека и общества является 1.
37505. Философия эпохи Возрождения 60 KB
  Для характеристики человека он вводит понятие микрокосм в нем как бы свернут большой космос он так же сложен так же важен подобен Вселенной. Человек в бесконечности – что он значит Но: в эпоху Возрождения сформировалась альтернативная культурная ориентация подчеркнувшая как раз достоинство человека. Гуманизм – это мировоззренческий принцип согласно которому признается безусловная ценность человека как личности его права на свободное развитие и проявление своих способностей утверждается благо человека как критерий оценки...