69031

Сигналы и помехи в каналах со случайными параметрами. Источники и математические модели непрерывных помех

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для этих каналов характерно что свойства аддитивной помехи шума остаются прежними а понятие случайности относится только к видоизменениям принимаемой реализации сигнала. Случайный характер может носить как амплитуда так и фаза принятого сигнала.

Русский

2014-09-29

146 KB

11 чел.

Лекция 5.1

Тема 5. Сигналы и помехи в каналах со случайными параметрами.

Занятие 1. Источники и математические модели непрерывных помех.

Физическая природа, источники и классификация мультипликативных помех.

Математические модели воздействия мультипликативных помех на сигнал.

/2/. 131-135

/1/. 141-143

Учебные вопросы.

Физическая природа, источники и классификация мультипликативных помех.

Классификация каналов связи.

Как было отмечено в лекции 2.1, при передаче дискретных и непрерывных сообщений могут использоваться дискретные либо непрерывные сигналы.

В той же лекции была приведена классификация каналов по признаку изменения параметров физической среды передачи сигналов, т. е. линии связи или канала (в узком смысле).

Вместе с тем каналы могут быть классифицированы по признаку вида передаваемого канала на входе и выходе канала (в широком смысле). На рисунке 5.1.1 показана структура канала в различных сечениях.

(рисунок)

Из рисунка видно, что по мере преобразования сигнала канал по указанному признаку может классифицироваться и как дискретный и как непрерывный.

В теме 4 были рассмотрены свойства непрерывного канала (линии связи) с неслучайными параметрами.

В лекции 4.1 речь шла о свойствах идеального канала (без помех), который полностью определяется своей КПФ  и соответствующей ИХ . К свойствам идеального канала приближаются некоторые системы проводной связи (малой протяженности).

В лекции 4.2 рассмотрена модель непрерывного канала с неслучайными параметрами, которую называют гауссовым каналом. этот канал задается не только КПФ, но корреляционной функцией (или энергетическим спектром) флуктуационной помехи — гауссова стационарного шума при .

К гаусовскому каналу приближаются многие магистрали проводной связи, а также радиоканалы между стационарными корреспондентами диапазона УКВ и ДЦВ.

В теме 5 рассматриваются непрерывные каналы со случайными параметрами.

Для этих каналов характерно, что свойства аддитивной помехи (шума) остаются прежними, а понятие случайности относится только к видоизменениям принимаемой реализации сигнала . Случайный характер может носить как амплитуда так и фаза принятого сигнала.

Изменения, происходящие с амплитудой и фазой сигнала при прохождении его через линию связи, которые затрудняют регистрацию этого сигнала приемным устройством, называется мультипликативной помехой.

Мультипликативные помехи.

В канале со случайными параметрами различают две основных вида мультипликативных помех:

изменяющие фазу;

изменяющие амплитуду(и фазу);

Источники мультипликативных помех имеют двойную физическую природу:

аппаратура канала связи;

среда передачи сигнала.

Случайные изменения фазы определяются:

1) применительно к аппаратуре

случайными значениями начальных фаз при формировании сигналов;

фазовой нестабильностью опорных  генераторов;

2) применительно к среде передачи

изменениями температуры, давления, физического состояния среды (кабельной линии, ионосферы и т. п.), вызывающими изменение времени распространения сигнала;

изменениями времени распространения в результате отражений от неоднородной среды (ионосферы в КВ связи, воды в гидроакустической связи и т. п.).

Случайное изменения амплитуды определяются:

изменениями степени поглощения электромагнитной энергии в направляющей или отражающей среде.

взаимодействием (интерференцией) волн при рассеянии в некотором объеме (тропосферные линии, КВ линии и  т.п.)

Перечисленные источники воздействуют на сигнал с достаточно медленной скоростью. Происходящие при этом изменения амплитуды и фазы сигнала !! замирания ??????

Гораздо большая скорость изменения параметров сигнала происходит тогда, когда в точку приема приходит много откликов излученного сигнала (многолучевое распространение). Такое явление имеет место в каналах со случайной структурой, о которых речь пойдет в теме 6.

Математические модели воздействия мультипликативных помех на сигнал.

Если в качестве модели передаваемого сигнала использовать

    (5.1.1)

то действие мультипликативной помехи в канале со случайными параметрами в общем виде следует представить:

где — огибающая сигнала.

— мгновенная начальная фаза сигнала,

то действие мультипликативной помехи в канале со случайными параметрами в общем виде следует представить:

  (5.1.2)

где — множитель определяющий изменение огибающей (или амплитуды) принятого сигнала.

— слагаемое полной фазы принятого сигнала, определяющее изменение его фазы в канале;

— флуктуационная помеха.

Более наглядно действие мультипликативной помехи видно из представления следующего из (5.1.2)

   (5.1.3)

Т. о., действие мультипликативной помехи проявляется в случайном приращении фазы принимаемого сигнала.

Еще один вид записи (5.1.3) в виде:

показывает, что форма принятого сигнала  в общем случае отличается от формы передаваемого сигнала . Это обуславливает несоответствие спектров сигналов  и . Как правило спектр сигнала  шире. Поэтому каналы со случайными параметрами называют еще часто каналами с рассеиванием по частоте.

Частным, несколько упрощенным случаем является гауссов канал с неопределенной фазой.

  (5.1.4)

В данной модели действуют предположения:

1). — гауссов стационарный процесс, заданный КФ .

2).

3). — случайная величина.

Последнее предполагает два допущения:

случайная величина  равномерно распределена на отрезке :

распределение  неизвестно и подлежит оцениванию.

Собственно выражение (5.1.2) описывает однолучевый гауссов канал с общими замираниями (флуктуацией амплитуды и фазы) или, иначе; канал с неопределенной амплитудой и  неопределенной фазой. Чаще всего такая модель применима к радиоканалам, а также к проводным каналам большой протяженности.

Условия 1) и 3) для гауссова канала сохраняют силу. Условие 2) формируется иначе:

— случайная величина с плотностью распределения .

При описании такого рода каналов используют математический прием: выражения, полученные для гауссова канала с неопределенной фазой  интегрируемой с весом  по параметру  , который входит в .

— отношение мощности сигнала к спектральной плотности помехи.

— отношение мощности сигнала к спектральной плотности БШ на выходе решающей схемы при .

Наиболее универсальным в описании является плотность распределения обобщенных гауссовских замираний ( четырехпараметрическая модель с замираниями ).

(5.1.5)

где

— квадратурные гауссовы компоненты огибающей с параметрами  и  соответственно.

Интересным и полезным свойством распределения (5.1.5) является его трансформация в другие практически важные распределения в частных случаях соотношения между параметрами:

при  имеет место распределение Райса (см. Лекцию 2.9)

при  и  — односторонне нормальное ,  (5.1.6)

и  — распределение Релея

  (5.1.7)

Модель замираний вида (5.1.5), хотя и довольно хорошо аппроксимирует реальные физические процессы, однако приводит к громоздким вычислениям. Поэтому обычно используют более простые модели: релеевскую (при отсутствии регулярной составляющей) и райсовскую (при наличии регулярной илуктуирующей состваляющей).


 

А также другие работы, которые могут Вас заинтересовать

41411. Рецепция «вечных» образов в современной литературе. Своеобразие трактированния образов Каина та Авеля в притче Х.Л. Борхеса «Каин и Авель» 26.86 KB
  Своеобразие трактированния образов Каина та Авеля в притче Х. Борхеса Каин и Авель. Борхеса притча писателя Каин и Авель.Своеобразие трактированния образов Каина та Авеля в притче Х.
41412. Объектно-ориентированный анализ и проектирование 80 KB
  Введение в объектно-ориентированный анализ и проектирование. Объектно-ориентированный анализ и проектирование Основная идея объектно-ориентированного анализа и проектирования objectoriented nlysis nd design состоит в рассмотрении предметной области и логического решения задачи с точки зрения объектов понятий или сущностей как показано на рис. В процессе объектно-ориентированного анализа основное внимание уделяется определению и описанию объектов или понятий в терминах предметной области.
41413. Проведення гідрологічних і метрологічних спостережень і гідрометричних робіт. Вимірювання витрат води гідрометричною вертушкою 384 KB
  Мета практики: польова учбова гідрометрична практика має за мету закріплення студентами теоретичних знань по гідрометрії та гідрології і набуття ними практичних навичок...
41414. Учет кредитов банка, займов и процентов за пользование заемными средствами 63.78 KB
  По договору займа одна сторона (заимодавец) передает в собственность другой стороне (заемщику) деньги или другие вещи, определенные родовыми признаками, а заемщик обязуется возвратить заимодавцу такую же сумму денег (сумму займа) или равное количество других таких вещей того же рода и качества.
41415. Учет прочих доходов и расходов. Методы учета заготовления и приобретения материалов 25.11 KB
  Для учета прочих доходов и расходов предназначен счет 91 Прочие доходы и расходы.По кредиту счета 91 Прочие доходы и расходы в течение отчетного периода находят отражение:· поступления, связанные с предоставлением за плату во временное пользование (временное владение и пользование)
41416. Понятие о забалансовых счетах и особенности отражения операций на этих счетах. Учёт расчётов с бюджетом по НДС 20.4 KB
  В отдельных случаях организации при осуществлении хозяйственной деятельности используют не принадлежащие им средства, находящиеся у них во временном пользовании, распоряжении или на ответственном хранении.
41417. Бухгалтерский учет затрат на строительство объектов 17.84 KB
  Порядок учета затрат на строительство объекта зависит от способа производства объекта – хозяйственного или подрядного. При использовании подрядного и хозяйственного способа производства строительные и монтажные работы отражаются у застройщика на счете 08
41418. Виды, формы и системы оплаты труда 17.83 KB
  Выплата заработной платы обычно производится в денежной форме в валюте РФ (в рублях). В соответствии с коллективным или трудовым договором по письменному заявлению работника оплата труда может производиться в иных формах
41419. СПЕЦИФИКА СОЦИАЛЬНОЙ РЕАЛЬНОСТИ 122 KB
  Существование человека вне общества невозможно. Но что такое общество, как оно возникает, каково его строение, в соответствии с какими принципами оно существует и функционирует Эти вопросы составляют предметное поле того раздела философских знаний, который называется социальной философией