69036

Физические и математические модели периодических сигналов. Временное и спектральное представление

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Физические и математические модели периодических сигналов. Физические модели периодических сигналов. Математические модели периодических сигналов. Спектральное представление периодических сигналов.

Русский

2014-09-29

166 KB

9 чел.

Практическое занятие 2.4

Тема 2. Физические и математические модели периодических сигналов. Временное и спектральное представление.

1. Физические модели периодических сигналов.

2. Математические модели периодических сигналов.

Спектральное представление периодических сигналов.

/1/, с 44-48

/4/, с 31-38


Учебные вопросы.

Физические модели периодических сигналов.

Периодические сигналы, введенные соотношение (2.3.1) на бесконечной оси времени в реальной природе не могут существовать. Физической моделью таких сигналов является повторяющийся по форме сигналы достаточной продолжительности наблюдения.

Источниками таких сигналов являются, прежде всего, генераторы:

гармонических колебаний;

импульсов (видео- и радиоимпульсов);

релаксационных колебаний;

Органы управления этих генераторов допускают управление всеми теми параметрами сигналов, которые были описаны в лекции 2.3.

Интересующий нас больше других гармонический сигнал можно наблюдать, однако, и без использования генератора, для этого достаточно наблюдать колебания, имеющие место в колебательном контуре простейшей конструкции. (рис 2.4.1).

Самым любопытным свойством данной конструкции является то, что форма выходных колебаний  практически не зависит от формы входного воздействия : как только контуру сообщается какая либо внешняя энергия, в нем возникают периодические колебания напряжения (тока), гармонической формы, с частотой , называемой частотой резонанса.

Строгий анализ свойств линейного четырехполюсника подобного типа будет проведен в курсе ЛРТУ. Сейчас же нам важно уяснить, что колебательный контур является базовым линейным элементом любого из современных (и многих-многих поколений предыдущих) радиотехнических устройств: фильтров, нагрузок усилителей, генераторов и т. д.

Именно по этому возникла задача спектрального (гармонического) анализа сигналов: колебательный контур является материальный носителем гармонического отклика.

И наоборот, те устройства, которые не являются носителями гармонического отклика (например, цифровые, дискретные устройства) абсолютно не требуют привлечения спектральных параметров сигнала для обеспечения и описания своей работы.

Таким образом, математический аппарат спектральной теории сигналов вызван к жизни свойствами физических устройств. Вне свойств реальных устройств этого аппарат бесполезен.

Определение 2(спектра)

Спектром данного сигнала назовем ту область частот, в которой данный сигнал вызывает гармонические отклики при воздействии на материальные носители гармонических откликов.

2. Математические модели периодических сигналов.

В предыдущем изложении (Лекция 2.3) были рассмотрены сигналы вида, представленного на рисунке 2.3.2. 2.3.3 (видео- или радиоимпульсные последовательности)

3. Спектральное представление периодических сигналов.

3.1 Математические основы спектральной теории периодических сигналов.

По своему смыслу задача отображения  сигнала  в спектральной области сводится к задаче представления этого сигнала в виде совокупности гармонических откликов , где — гармоническая функция,  амплитуда гармонического колебания :

(2.4.1)

В математике такая задача известна как задача разложения  произвольной (кусочно непрерывной по Дирихле) функции  по заданной системе ортогональных на отрезке  функций .

Система функций называется ортогональной на отрезке , если  при    (2.4.2)

и для любого  

,

где — норма функции .

Доказано, что для ряда (2.4.1) коэффициенты  определяются с помощью соотношения  то при любом заданном числе слагаемых ряд (2.4.1) наилучшим образом (с минимальной ошибкой) представляет сигнал  по сравнению с другими способами поиска

Ряд (2.4.1) называется обобщенным радом Фурье.

К счастью, гармонические колебания образуют ортогональную систему функций:

где  — период периодической функции , при чем интервал ортогональности .

Косинусные и синусные коэффициенты определяются по формулам:

 

Тогда ряд вида (2.4.1) можно представить ,

где ,

Часто используют вместо (2.4.8) запись ,

где ,

По своему математическому смыслу запись (2.4.8) означает, что временная периодическая функция  может быть представлена в виде бесконечного множества гармонических функций с амплитудами , частотами, кратными , и начальными фазами .

По своему физическому смыслу запись (2.4.8) означает, что непериодический сигнал , воздействуя на бесконечное множество материальных носителей гармонического отклика (контуров и т. д.) вызовет отклик лишь в тех из них, собственная резонансная частота колебаний которых  кратна частоте , амплитуд (интенсивность) отклика будет пропорциональна коэффициентам , а начальная фаза возникших гармонических откликов будет соответствовать .

Определение 3 (спектра).

Спектр сигнала — это прогноз реакции множества материальных носителей гармонического отклика на воздействия конкретной временной формы в виде данного сигнала.

Из соотношения (2.4.8) следует, важнейшее свойство спектров периодических сигналов.

Спектры периодических сигналов любой формы являются линейчатыми, то есть не сплошными! (рис. 2.4.2)

Пример. Спектр периодического ЧМ колебания. Спектр колебаний генератора гармоник.

3.2. Примеры спектрального представления периодических колебаний.

последовательность униполярных видеоимпульсов. (рис. 2.3.2) 

 

В итоге (рис. 2.4.3) Важная закономерность

интервал между составляющими линейчатого спектра по оси частот  определятся периодом ;

“нули” огибающей определяются длительностью импульса .

Меандр.          Меандр — это двухполярная последовательность видеоимпульсов, с  (посылки равной длительности). Для этого сигнала (рис 2.4.4)

Последовательность радиоимпульсов (рис.2.3.3)

В отличии от спектра последовательности аналогичных видеоимпульсов, начинающегося с частоты , спектр последовательности радиоимпульсов симметричен относительно частоты . Коэффициенты гармонических составляющих спектра совпадают с коэффициентами  видеопоследовательности (рис. 2.4.5).

3.3 Понятие о реальном спектре.

Во-первых, из выражения (2.4.8) и последующих примеров следует, что спектр периодических сигналов  содержит бесконечное множество составляющих, т. е. он бесконечен по оси частот. Очевидно, любой реальный сигнал занимает ограничений частотный ресурс.

Действительно, полная мощность сигнала равна сумме средних мощностей, содержащихся в каждой составляющей спектра:

В сумме (2.4.15) заключена огромная энергия. Для определения реального спектра ограничиваются таким числом составляющих, после которых энергия гармонических компонент составляет не более 5% от максимальной. (для последовательности импульсов в ряде случаев достаточно взять всего лишь 3 составляющие).

Во-первых, при условии, что реально “чисто гармонических” колебаний не существует, возникает вопрос: а что же реально существует?

Реально существует отклик конкретной линейной системы на конкретное временное воздействие (сигнал).

Если в модели гармоническое колебание длится бесконечно, то реальный отклик продолжается в зависимости от качества (добротности) колебательной системы и внешнего воздействия.

Многолетняя практика показала высокую точность прогноза реального спектра при использовании математических моделей по теории Фурье.

Выводы.

Ряды Фурье с достаточной для практики точностью позволяют моделировать периодические сигналы в спектральной области.

Кроме определения частотного ресурса сигнала, спектральный метод является удобным инструментом анализа сигналов, проходящих через линейные устройства. В этом случаи имеется возможность (на основе принципа суперпозиции) заменить анализ сигала сложной формы, анализом прохождения через линейную цепь отдельных гармонических составляющих, не манящих свою частоту, а только амплитуду и фазу.


 

А также другие работы, которые могут Вас заинтересовать

53370. Розвиток слухової уваги, слухової пам’яті та фонематичного сприймання у дітей дошкільного віку 68 KB
  Діти стають у коло непомітно для ведучого вони передають за спиною один одному дзвіночок. Логопед розрає дітям ведмедиків з зображенням цих предметів потім за ширмою озвучує ці предмети а діти повинні відгадати який ведмедик шумить. Дидактична гра Хто кличе Діти по черзі називають імя ведучого який стоїть до них спиною. Потім гра ускладнюється і діти кличуть ведучого: Ау то голосно то тихо в залежності від того що скаже логопед: Далеко пішли у ліс Близько пішли у ліс.
53371. Учет косвенных расходов в составе себестоимости продукции. Синтетический учёт движения нематериальных активов 22.77 KB
  Косвенные затраты — затраты, которые, в отличие от прямых затрат, не могут быть непосредственно отнесены на себестоимость одного конкретного вида продукции. Косвенные затраты относятся одновременно ко всем видам продукции и распределяются между ними условно: общепроизводственные и общехозяйственные расходы, часть расходов на продажу и др
53372. Дидактические игры как средство активизации учащихся при изучении таблицы умножения 52.5 KB
  Хочу рассказать о некоторых дидактических математических играх, которые я использую на уроках с целью активизации учащихся при формировании вычислительных навыков. Навык, как известно, приобретается в результате многократных повторений одних и тех же операций. Чтобы избежать однообразия в шлифовке табличных случаев умножения и деления, провожу упражнения в игровой, занимательной форме.
53373. Роль ігор-драматизацій в навчанні дошкільників англійської мови 97 KB
  Всі етапи роботи з казкою здійснюються разом з дітьми. Ініціативу розподілу ролей я надаю малечі (за бажанням), разом з тим, тактовно корегую їх вибір, адже дітям з низьким або середнім рівнем розвитку бажано надати роль, яка є невеличкою за обсягом, не дуже складною та не містить у собі тих мовних структур, які викликають труднощі у дитини (зокрема це стосується звуковимови), щоб не зникло бажання приймати участь у виставі.
53374. Использование деловых и ролевых игр на уроках химии для развития ключевых компетентностей учащихся 121.5 KB
  В процессе игры у детей вырабатывается привычка сосредоточиться мыслить самостоятельно развивает внимание стремление к знаниям. По спектру целевой ориентации игры подразделяются: дидактические: расширение кругозора познавательная деятельность; применение ЗУН в практической деятельности; формирование определенных умений и навыков необходимых в практической деятельности; развитие общеучебных умений и навыков; развитие трудовых навыков. В нее включаются последовательно игры и упражнения формирующие умение выделять основные характерные...
53375. Дидактическая игра – залог успешной деятельности учащихя на уроке 101 KB
  Игра помогает формированию фонематического восприятия слова обогащает ребенка новыми сведениями активирует мыслительную деятельность внимание а главное стимулирует речь. В каком глаголе слово нет слышится сто раз стонет В каком слове семь гласных семья Что принадлежит только тебе а употребляется другими чаще чем тобой имя Какое слово состоит из трёх одинаковых букв три о Какая часть растения бывает и частью слова корень Какие буквы обозначают два звука если стоят в начале слова или после гласной ...
53376. Ігрові завдання на корекцію емоційної сфери дітей дошкільного віку 98.5 KB
  Психологічний етюд Хто що любить Діти приходять у лісове кафе. Психологічний етюд Клумба і садівник Діти обирають ролі квітів на клумбі. Психологічний етюд Слухаємо себе Ведучий звертається до дітей: Давайте сядемо зручніше розслабимося і заплющимо очі. Психологічний етюд Неслухняні ведмежата Ведмедики з'їли смачні але немиті яблука.
53377. Игры для детей к Библейским урокам 43 KB
  Во время этой игры дети могут увидеть что Божья любовь неотделима от нас также как и наша тень. Пока бутерброды теплые поговорить о том что нам тепло когда Божья любовь покрывает нас как расплавленный сыр покрывает хлеб.