69038

Детерминированные сигналы. Специальные способы временного представления. Преобразование Гильберта

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Запись гармонического сигнала в виде (2.3.2) называется тригонометрической. Такая запись соответствует описанию колебательного движения некоторой тоски вдоль прямой (ось координат) во времени (Ось абсцисс). Кроме тригонометрической, часто используют запись в комплексной или экспоненциальной форме.

Русский

2014-09-29

167.5 KB

9 чел.

Лекция 2.6

Тема 2. Сообщение и сигнал.

Занятие 1. Детерминированные сигналы. Специальные способы временного представления. Преобразование Гильберта.

Специальные способы временного представления детерминированных сигналов. Огибающая сигнала.

Понятие о преобразовании Гильберта.

/1/. 55-57

/2/. 44-51

/3/. 39-50


Учебные вопросы.

Специальные способы представления детерминированных сигналов. Огибающая сигнала.

Запись гармонического сигнала в виде (2.3.2) называется тригонометрической. Такая запись соответствует описанию колебательного движения некоторой тоски вдоль прямой (ось координат) во времени (Ось абсцисс).

Кроме тригонометрической, часто используют запись в комплексной или экспоненциальной форме.

Так запись вида:

(2.6.1)

соответствует описанию вращения против часовой стрелки вектора длинной А относительно неподвижной точки с круговой частотой и начальной фазой . (рис 2.6.1)

Тогда гармоническому колебанию вида (2.3.2) соответствует запись

(2.6.2)

которая в математическом смысле представляет собой действительную часть комплексной функции

(2.6.3)

Механическая интерпретация записи (2.6.2) заключается в представлении колебательного движения в виде проекции вращательного движения на одну ось  (действительных значений) (рис 2.6.2)

В свою очередь запись (2.6.4) содержит описание двух проекций колебания: на действительную ось — через , и описание проекции на мнимую ось — через функцию, полученную в результате изменения фазы  на .

Сигнал

(2.6.4)

называют сигналом, сопряженным с сигналом .

Очевидно, что

— амплитуда гармонического колебания, (2.6.5)

— полная фаза гармонического колебания, (2.6.6)

— круговая частота гармонического колебания. (2.6.7)

Поскольку гармоническое колебание вида (2.3.2) не встречается в природе (хотя и выступает удобной математической моделью) то при описании реальных сигналов пользуются  записью, называемой квазигармонической:

 (2.6.8)

То обстоятельство, что множитель  перестал быть константой, и зависит от времени (так же как и фаза ), придает сигналу вида (2.6.8) свойства, принципиально отличные от сигнала вида (2.3.2).

Пример “квазигармонического” сигнала представлен на рисунке 2.6.3.

На рисунке можно наблюдать проявления двух различных сигналов. Сигнал  соответствует первичному электрическому сигналу речевого сообщения. (он “несет” сообщение)

Одновременно можно видеть колебание с частотой , соответствующей частоте несущей, выполняющей роль переносчика первичного электрического сигнала в конкретной среде передачи. Судя по меняющейся “амплитуде”, результирующее колебание не Является гармоническим.

В точке приема, очевидно, интерес будет представлять не весь сигнал, а только те его признаки которые соответствуют . Колебания с частотой  не несут сообщения, но выполняют технически важную функцию. Применительно к записи (2.6.8). Эти признаки описываются множителем , который носит название огибающей квазигармонического колебания.

Если сигналу  вида (2.6.8) подобрать (по некоторому правилу) сопряженный сигнал , то по аналогии с (2.8.5) можно записать

(2.6.9)

В выражении (2.6.9) пара !! — квадратурные компоненты.

Тогда, по аналогии с (2.6.6), существует аргумент

(2.6.10)

называемый полной мгновенной фазой, а по аналогии с (2.6.7) вводится понятие мгновенной частоты.

 (2.6.11)

Слово “мгновенной” призвано подчеркнуть невозможность зафиксировать конкретное значение фазы и “частоты”  в колебании вида (2.6.8).

свойства “мгновенной частоты” поместим в ту же таблицу, где ранее были сведены свойства параметра “частота” гармонического колебания:

 зависит от времени t.

при прохождении сигнала через линейную цепь с постоянными параметрами может изменяться.

не может служить аргументом передаточной функции цепи.

для данного сигнала в данный момент времени принимает одно единственное значение.

В обобщенной текстовой форме сигнал  может быть записан

, где ;  

Эта запись имеет специальное название — аналитический сигнал.

Аналитическим назовем сигнал, представленный в комплексной форме, (2.6.12) для которого справедливы соотношения (2.6.9)-(2.6.11) для огибающей , и мгновенной фазы , мгновенной частоты , выраженные через квадратурные компоненты сопряженные по Гильберту.

Сопряженным по Гильберту оказывается сигнал, имеющий тот же амплитудный спектр, что и исходный сигнал, а фазовый спектр сдвинутый  относительно исходного сигнала :

(2.6.14)

где — спектр Фурье, (комплексная спектральная плотность) исходного сигнала;

— амплитудный спектр;

— фазовый спектр.

Важно заметить, что для поиска четырех функций  достаточно знать две из них. Остальные легко определяются из приведенных выражений.

Понятие о преобразовании Гильберта.

Для того, чтобы однозначно сформулировать правило поиска  по виду сигнала  (с целью определения его огибающей  и мгновенных параметров), сформулируем требования к искомому результату.

Судя по рисунку (2.6.3), огибающая должна удовлетворять условию  при любом значении .

При  — в общих крайних точках — их производные совпадают;

Из сравнения (2.6.5—2.6.7) и (2.6.9—2.6.11), видно, что для гармонического колебания огибающая совпадает с амплитудой, а мгновенная частота — с частотой гармонического колебания;

Малым изменениям сигнала  должны соответствовать малые изменения  и ;

Мгновенная фаза и мгновенная частота не должны зависеть от мощности сигнала; это условие выполняется в случаи линейности оператора преобразования  в .

Единственным линейным оператором, при котором для всех гармонических сигналов выполняется условие 3), является преобразование Гильберта:

где сигналы  и  называются сопряженными по Гильберту.

В принципе, существуют несколько других преобразований, отвечающих некоторым отдельным свойствам и требованиям из перечисленных. Однако в совокупности только преобразование вида (2.6.13)  позволяет удовлетворить всем требованиям к огибающей и имеет ряд других полезных свойств.

Несмотря на внешнюю сложность преобразования (2.6.13), оно имеет достаточно простой физический смысл:

Очевидность и справедливость такого преобразования для гармонического сигнала  иллюстрировалась выше выражением (2.6.4)

Выводы:

В теории связи и общеинженерных приложениях кроме тригонометрической формы, используют комплексную форму представления сигналов.

Двойственность задач, возлагаемых на электрические (квазигармонические) сигналы (колебания):

“переносить” сообщения (низкочастотный сигнал)

“переносить” НЧ сигнал в среде передачи (ВЧ сигнал) — порождает постановку задачи о выделении огибающей (НЧ) из квазигармонического сигнала.

Определенные виды огибающей осуществляются на основе использования квадратурных компонент исходного сигнала , и сопряженного с ним (по Гильберту) сигнала .

получение сопряженного сигнала возможно с помощью линейного устройства, осуществляющего поворот фазы каждой гармонической компоненты  на (фазовращателя)


 

А также другие работы, которые могут Вас заинтересовать

43207. Привод шаровой мельницы 2.03 MB
  Выбираем асинхронный электродвигатель закрытый обдуваемый единой серии АИР мощностью = 15 кВт и синхронной частотой вращения = 3000 об/мин
43208. Проектування привіду до стрічкового конвейєра за схемою та графіком навантаження 1.35 MB
  Закриті зубчасті передачі при коловій швидкості змащуються зануренням їх в мастило, а також за рахунок масляного туману, який утворюється за рахунок великої колової швидкості. Контактне напруження при швидкості дорівнює 475 МПа. За цими даними вибираємо необхідну в’язкість мастила і вибираємо мастило: індустріальне леговане, для зубчастих передач ИРП-150. одноступінчатого редуктора.
43209. Определение основных параметров бульдозера ДЗ-171 на базе трактора Т-170 957.5 KB
  Бульдозеры как навесное оборудование на тракторы, тягачи и другие базовые машины широко распространены, что объясняется простотой их конструкции, высокой производительностью, возможностью их использования в самых разнообразных грунтовых и климатических условиях и относитнльно низкой стоимостью выполненных работ. Применяются они в дорожном, железнодорожном, горнорудном, мелиоративном и ирригационном строительстве. Для большинства современных гусеничных бульдозеров экономически выгодная дальность дальность перемещений в настоящее время не превышает 60-80м, колесных 100-150м.
43210. Проектирование станочного приспособления 1.5 MB
  На основании этой комплексной детали будем разрабатывать и проектировать станочное приспособление. Технические характеристики для САТ630 Наибольший диаметр обрабатываемого изделия мм: над станиной 720 над суппортом 560 Расстояние между центрами мм 1 000 1 500 2 500 Максимальное перемещение суппорта мм: по оси Х 400 по оси Z 1 100 1 600 2 600 по оси Y 55 65 Максимальный вес обрабатываемой детали кг: в патроне 300 в центрах 800 Диаметр отверстия в шпинделе мм 102 166 Пределы частот вращения...
43211. Разработка автоматизированной системы анализа финансового состояния предприятия в условиях неопределенности 1.47 MB
  Основной целью проведения анализа финансового состояния организаций является получение объективной оценки их платежеспособности, финансовой устойчивости, деловой и инвестиционной активности, эффективности деятельности. Для проведения анализа финансового состояния используются следующие группы показателей, характеризующих различные аспекты деятельности организации...
43212. Деталь типа тело вращения – вал-шестерня 2.4 MB
  Изделие – редуктор зубчатый цилиндрический двухступенчатый предназначен для увеличения передаваемого крутящего момента и может быть использован во многих механизмах – лебёдка, станция приводная транспортёров, станция натяжная и др.
43213. Автоматизация листовых штамповочных работ 5.59 MB
  Расчет зависимости частоты вращения ротора серводвигателя от шага подачи ленты валковой подачи от числа ходов ползуна пресса и от фазового угла подачи ленты в зону штампа 3 Экономическая часть 3. При полной автоматизации работы коэффициент использования числа ходов пресса достигает 100 хотя абсолютное число используемых ходов за рабочую смену несколько ниже предельно возможного изза потерь времени на перестановку штампов заправку ленты и т. Работа комплекса начинается с того что рулон ленты устанавливается...
43214. Электропривод цепного транспортера 1.73 MB
  Вращающий момент с вала электродвигателя передается через упругую муфту с вогнутым профилем торообразной оболочки на быстроходный вал двухступенчатого цилиндрического редуктора. ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ Основными исходными данными для выбора электродвигателя являются мощность на выходном валу привода и частота вращения его вала между которыми существует связь: где: мощность на выходном валу привода кВт; окружная сила тяговое усилие кН; скорость ленты м с; Требуемая мощность электродвигателя где: требуемая мощность...
43215. Інформаційне та комунікаційне забезпечення, зв’язки з громадськістю в системі управлінської діяльності органу державної влади 38.05 KB
  Усі громадяни України, юридичні особи та державні органи мають право на інформацію. Але реалізація права на інформацію громадянами, юридичними особами і державою не повинна порушувати громадські, політичні, економічні, соціальні, духовні, екологічні та інші права, свободи і законні інтереси інших громадян, права та інтереси юридичних осіб.