69038

Детерминированные сигналы. Специальные способы временного представления. Преобразование Гильберта

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Запись гармонического сигнала в виде (2.3.2) называется тригонометрической. Такая запись соответствует описанию колебательного движения некоторой тоски вдоль прямой (ось координат) во времени (Ось абсцисс). Кроме тригонометрической, часто используют запись в комплексной или экспоненциальной форме.

Русский

2014-09-29

167.5 KB

9 чел.

Лекция 2.6

Тема 2. Сообщение и сигнал.

Занятие 1. Детерминированные сигналы. Специальные способы временного представления. Преобразование Гильберта.

Специальные способы временного представления детерминированных сигналов. Огибающая сигнала.

Понятие о преобразовании Гильберта.

/1/. 55-57

/2/. 44-51

/3/. 39-50


Учебные вопросы.

Специальные способы представления детерминированных сигналов. Огибающая сигнала.

Запись гармонического сигнала в виде (2.3.2) называется тригонометрической. Такая запись соответствует описанию колебательного движения некоторой тоски вдоль прямой (ось координат) во времени (Ось абсцисс).

Кроме тригонометрической, часто используют запись в комплексной или экспоненциальной форме.

Так запись вида:

(2.6.1)

соответствует описанию вращения против часовой стрелки вектора длинной А относительно неподвижной точки с круговой частотой и начальной фазой . (рис 2.6.1)

Тогда гармоническому колебанию вида (2.3.2) соответствует запись

(2.6.2)

которая в математическом смысле представляет собой действительную часть комплексной функции

(2.6.3)

Механическая интерпретация записи (2.6.2) заключается в представлении колебательного движения в виде проекции вращательного движения на одну ось  (действительных значений) (рис 2.6.2)

В свою очередь запись (2.6.4) содержит описание двух проекций колебания: на действительную ось — через , и описание проекции на мнимую ось — через функцию, полученную в результате изменения фазы  на .

Сигнал

(2.6.4)

называют сигналом, сопряженным с сигналом .

Очевидно, что

— амплитуда гармонического колебания, (2.6.5)

— полная фаза гармонического колебания, (2.6.6)

— круговая частота гармонического колебания. (2.6.7)

Поскольку гармоническое колебание вида (2.3.2) не встречается в природе (хотя и выступает удобной математической моделью) то при описании реальных сигналов пользуются  записью, называемой квазигармонической:

 (2.6.8)

То обстоятельство, что множитель  перестал быть константой, и зависит от времени (так же как и фаза ), придает сигналу вида (2.6.8) свойства, принципиально отличные от сигнала вида (2.3.2).

Пример “квазигармонического” сигнала представлен на рисунке 2.6.3.

На рисунке можно наблюдать проявления двух различных сигналов. Сигнал  соответствует первичному электрическому сигналу речевого сообщения. (он “несет” сообщение)

Одновременно можно видеть колебание с частотой , соответствующей частоте несущей, выполняющей роль переносчика первичного электрического сигнала в конкретной среде передачи. Судя по меняющейся “амплитуде”, результирующее колебание не Является гармоническим.

В точке приема, очевидно, интерес будет представлять не весь сигнал, а только те его признаки которые соответствуют . Колебания с частотой  не несут сообщения, но выполняют технически важную функцию. Применительно к записи (2.6.8). Эти признаки описываются множителем , который носит название огибающей квазигармонического колебания.

Если сигналу  вида (2.6.8) подобрать (по некоторому правилу) сопряженный сигнал , то по аналогии с (2.8.5) можно записать

(2.6.9)

В выражении (2.6.9) пара !! — квадратурные компоненты.

Тогда, по аналогии с (2.6.6), существует аргумент

(2.6.10)

называемый полной мгновенной фазой, а по аналогии с (2.6.7) вводится понятие мгновенной частоты.

 (2.6.11)

Слово “мгновенной” призвано подчеркнуть невозможность зафиксировать конкретное значение фазы и “частоты”  в колебании вида (2.6.8).

свойства “мгновенной частоты” поместим в ту же таблицу, где ранее были сведены свойства параметра “частота” гармонического колебания:

 зависит от времени t.

при прохождении сигнала через линейную цепь с постоянными параметрами может изменяться.

не может служить аргументом передаточной функции цепи.

для данного сигнала в данный момент времени принимает одно единственное значение.

В обобщенной текстовой форме сигнал  может быть записан

, где ;  

Эта запись имеет специальное название — аналитический сигнал.

Аналитическим назовем сигнал, представленный в комплексной форме, (2.6.12) для которого справедливы соотношения (2.6.9)-(2.6.11) для огибающей , и мгновенной фазы , мгновенной частоты , выраженные через квадратурные компоненты сопряженные по Гильберту.

Сопряженным по Гильберту оказывается сигнал, имеющий тот же амплитудный спектр, что и исходный сигнал, а фазовый спектр сдвинутый  относительно исходного сигнала :

(2.6.14)

где — спектр Фурье, (комплексная спектральная плотность) исходного сигнала;

— амплитудный спектр;

— фазовый спектр.

Важно заметить, что для поиска четырех функций  достаточно знать две из них. Остальные легко определяются из приведенных выражений.

Понятие о преобразовании Гильберта.

Для того, чтобы однозначно сформулировать правило поиска  по виду сигнала  (с целью определения его огибающей  и мгновенных параметров), сформулируем требования к искомому результату.

Судя по рисунку (2.6.3), огибающая должна удовлетворять условию  при любом значении .

При  — в общих крайних точках — их производные совпадают;

Из сравнения (2.6.5—2.6.7) и (2.6.9—2.6.11), видно, что для гармонического колебания огибающая совпадает с амплитудой, а мгновенная частота — с частотой гармонического колебания;

Малым изменениям сигнала  должны соответствовать малые изменения  и ;

Мгновенная фаза и мгновенная частота не должны зависеть от мощности сигнала; это условие выполняется в случаи линейности оператора преобразования  в .

Единственным линейным оператором, при котором для всех гармонических сигналов выполняется условие 3), является преобразование Гильберта:

где сигналы  и  называются сопряженными по Гильберту.

В принципе, существуют несколько других преобразований, отвечающих некоторым отдельным свойствам и требованиям из перечисленных. Однако в совокупности только преобразование вида (2.6.13)  позволяет удовлетворить всем требованиям к огибающей и имеет ряд других полезных свойств.

Несмотря на внешнюю сложность преобразования (2.6.13), оно имеет достаточно простой физический смысл:

Очевидность и справедливость такого преобразования для гармонического сигнала  иллюстрировалась выше выражением (2.6.4)

Выводы:

В теории связи и общеинженерных приложениях кроме тригонометрической формы, используют комплексную форму представления сигналов.

Двойственность задач, возлагаемых на электрические (квазигармонические) сигналы (колебания):

“переносить” сообщения (низкочастотный сигнал)

“переносить” НЧ сигнал в среде передачи (ВЧ сигнал) — порождает постановку задачи о выделении огибающей (НЧ) из квазигармонического сигнала.

Определенные виды огибающей осуществляются на основе использования квадратурных компонент исходного сигнала , и сопряженного с ним (по Гильберту) сигнала .

получение сопряженного сигнала возможно с помощью линейного устройства, осуществляющего поворот фазы каждой гармонической компоненты  на (фазовращателя)


 

А также другие работы, которые могут Вас заинтересовать

18839. Расчет по переменному току 157.73 KB
  Расчет по переменному току. Для расчету по переменному току необходимо: 1 начало координат на характеристиках транзистора перенести в рабочую точку О по постоянному току. В рабочей точке определить для бесконечно малых приращений параметры транзистора. Наиболее ис
18840. Определение входного сопротивления 79.52 KB
  Определение входного сопротивления Опишем линейную модель усилителя системой уравнений в соответствии с 1 и 2 законами Кирхгофа: Из уравнения 2 определим: и подставим в уравнение 1. Отсюда находим входное сопротивление транзистора. При напряжении колл...
18841. Определение коэффициента усиления по напряжению 225.45 KB
  Определение коэффициента усиления по напряжению Для этого воспользуемся следующей методикой: Рис. 3.10 упрощенная схема замещения усилителя с ОЭ. Предположим что входное и выходное напряжения синфазны пусть по отношению к общей шине распложен как показано на Ри
18842. Определение коэффициента усиления по току 60.28 KB
  Определение коэффициента усиления по току. Коэффициент усиления по току определяется как: Где а . Следовательно получим: . Из выражения следует что коэффициент усиления по току . Для увеличения ki следует уменьшать RН однако начиная с определенного значения RН на...
18843. Определение выходного сопротивления 378.4 KB
  Определение выходного сопротивления. Выходное сопротивление можно определить двумя способами. 1 Отключить сопротивление нагрузки. Замкнуть активный источник входного сигнала. Подвести к выходным зажимам усилителя переменное напряжение . Рассчитать переменный ток ...
18844. Схема с общим эмиттером 108.35 KB
  Схема с общим эмиттером. Схема усилителя представлена на рисунке 3.6. Назначения элементов аналогичны представленной ранее схемы. Рис. 3.6 принципиальная схема усилителя с ОЭ...
18845. Расчет схемы по постоянному току 153.47 KB
  Расчет схемы по постоянному току. Режим работы схемы по постоянному току определяется элементами: RЭ RБ EК и параметрами транзистора. Аналогично как и для схемы с общим эмиттером выходную и входную цепи можно описать следующими системами уравнений: Т. к. I
18846. Расчет по переменному току 237.08 KB
  Расчет по переменному току. Представим схему замещения усилителя с ОК для расчета каскада по переменному току см. Рис. 3.16. при этом примем следующие допущения: зажимы и источника питания по переменному току считаем однопотенциальными за счет низкого внутреннег...
18847. Определение коэффициента усиления по току 51.07 KB
  Определение коэффициента усиления по току. Коэффициент усиления по току можно определить как отношение выходного тока ко входному: где ток нагрузки входной ток эмиттерного повторителя. Подставив значения IН и IВх в формулу для ki получим: . Поскольку доп