69040

Расчет энергетического спектра случайного сигнала

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Расчет энергетического спектра случайного сигнала. Понятие об энергетическом спектре случайного сигнала. Пример расчета энергетического спектра случайного сигнала. Понятие об энергетическом спектре случайного сигнала.

Русский

2014-09-29

206.5 KB

13 чел.

Практическое занятие  2.8

Тема 2. Сообщение и сигнал.

Занятие 8. Расчет энергетического спектра случайного сигнала.

Понятие об энергетическом спектре случайного сигнала. Математическое описание.

Пример расчета энергетического спектра случайного сигнала.

/1/. 48-50

/2/. 37-43

/3/. 26

Иметь на следующем занятии задачник /6/.


Учебные вопросы.

Понятие об энергетическом спектре случайного сигнала. Математическое описание.

На занятиях 2.4 и 2.5 было введено понятие спектра детерминированного сигнала.

Применительно к случайному процессу по наблюдению за реализацией этого процесса можно на некотором отрезке  построить функцию (см. (2.5.9)):

   (2.8.1)

Эта функция (“мгновенный спектр”) является случайной.

Задача не заключается в определении неслучайных характеристик для ансамбля реализаций случайного процесса.

Строго говоря, реализации стационарных случайных процессов имеют бесконечную энергию, поэтому к ним не может быть применено равенство Парсеваля, характеризующее распределение энергии сигнала по оси частот. Более того, в этом случаи нарушаются условия существования спектра Фурье для этих сигналов.

Однако во многих практически важных случаях вместо условия конечности энергии сигнала:     (2.8.2)

оказывается справедливым другое условие:

  (2.8.3)

то есть условие конечной мощности процесса (его реализации).

Тогда по аналогии с записью равенства Парсеваля (2.5.18) можно записать с учетом (2.8.1):

(2.8.4)

где    (2.8.5)

— спектральная плотность мощности реализации сигнала с “мгновенным” спектром реализации .

Тогда полная мощность реализации:

определяется через функцию , характеризующую распределение мощности реализаций случайного сигнала по оси частот.

Проводя статистическое усреднение по ансамблю реализаций случайного процесса , можно определить:

  (2.8.7)

— спектральную мощность стационарного случайного процесса или его энергетический спектр.

В большинстве практических случаев определить  по формулам  (2.8.5), (2.8.7) очень затруднительно. Гораздо удобнее пользоваться для определения  случайного процесса его временной функцией корреляции, введенной соотношением (2.7.25).

Тогда с учетом (2.5.14), (2.5.17) можно записать

(2.8.8)

где — комплексно-сопряженная с КСП с КСП .

Следовательно, временная функция корреляции и спектральная плотность мощности реализации сигнала связаны между собой преобразованием Фурье . Обратное преобразование имеет вид:

     (2.8.8а)

Переходя к математическому ожиданию по всему ансамблю реализаций (см. 2.8.7) стационарного случайного процесса  получим соотношения:

     (2.8.9)

      (2.8.10)

показывающие, что энергетический спектр случайного сигнала связан парой преобразований Фурье с его функцией корреляции. Это утверждение составляет сущность теоремы Винера-Хинчина.

Обе функции  и — являются линейчатыми функциями своих аргументов для всех действительных стационарных процессов.

Как следствие, для частот  справедливы соотношения:

     (2.8.11)

     (2.8.12)

Для комбинации сигналов  и  справедливо:

Важнейшей константой следующей из выражения для энергетического спектра, является эффективная ширина энергетического спектра . По аналогии определением для интервала корреляции (2.7.31) .

   (2.8.13)

где , , как правило

Пример расчета энергетического спектра случайного сигнала.

Обратимся к случайному синхронному телеграфному сигналу (рис. 2.7.2): (Задача 2.2.1(90г.) или 1.1.1 (78г.)).

Сначала определим выражение для функции корреляции, чтобы потом, согласно (2.8.12),  определить энергетический спектр.

Согласно (2.7.25) и (2.7.19)

При , так как в соседних интервалах сигнал с равной вероятностью может быть равен +1 или -1.

При  (рис. 2.8.1)

с вероятностью Р отрезок принадлежит разным интервалам, тогда  

с вероятностью  отрезок принадлежит одному интервалу

Вероятность принадлежности интервала длительностью   одному отрезку  равна

Таким образом   (2.8.14) (рис. 2.8.14)

Пользуясь (2.8.12) вычислим:

(2.8.15)

результат представлен на рисунке (2.8.3)

Рисунок показывает, что большая часть мощности сосредоточена на низких частотах. Согласно (2.8.13)

Этот результат интересно сравнить с результатом решения задачи 1.1.16 (1.5.2)  /6. С. 11, 151/

Философия сравнения этих двух подходов к оценке ширины спектра сигнала такова:

в задаче 1.5.2 ширина спектра случайного сигнала ТГ сигнала оценивается через ширину спектра предельного детерминированного сигнала ; оценка является экстремальной (max), .

в задаче 1.1.1 ширина спектра случайного ТГ сигнала оценивается через энергетический спектр случайного сигнала как результат усреднения статистических свойств сигнала, оценка является среднеквадратической по ансамблю реализаций.

Выводы:

В технических приложениях м. б. полезны оба подхода. Один другой не отрицает, а дополняет.

Для описания свойств случайных сигналов возможны применение аппарата описания как случайных, так и детерминированных сигналов.


 

А также другие работы, которые могут Вас заинтересовать

68495. Цифровая печать: технологии и перспективы 152 KB
  Ее основные стадии: формирование скрытого латентного изображения на воспринимающей поверхности рецепторе; проявление изображения; прямой или косвенный через промежуточную поверхность перенос изображения на запечатываемый материал; закрепление изображения на запечатываемом материале...
68497. Электричество Пособие для самостоятельной работы 414 KB
  Как для любого векторного поля у электростатического существуют две характеристики Силовая характеристика – напряженность электростатического поля связанная с силой действия поля на другие заряды Энергетическая характеристика – потенциал электростатического поля связанная с потенциальной...
68498. Электрофотография 263 KB
  Элемент изображения поддельной купюры 100 рублей образца 1997 года выпуска номинал 100 обозначенный в левом нижнем углу лицевой стороны банкноты выполненной способом электрофотографии. Элемент изображения поддельной купюры 100 долларов США образца 1996 года выпуска SERIES 1996 выполненной...
68499. Экономическая эффективность метрологического обеспечения производства 60.61 KB
  Механизм формирования экономических потерь от погрешности измерений. Экономическая эффективность внедрения новых методов и средств измерений. Экономический эффект от проведения аттестации не стандартизованных средств измерений технологического контрольноизмерительного и испытательного оборудования.
68500. Морфологические особенности опухолей из эпителия и опухоли из тканей, производных мезенхимы 113 KB
  Эпителиальные опухоли - возникают из плоского, переходного, призматического и железистого эпителия. Доброкачественные опухоли из эпителия. Папиллома – опухоль из плоского и переходного эпителия. Локализуется на коже, слизистой полости рта, голосовых связках, в лоханке, мочеточнике, мочевом пузыре и влагалище.
68502. Мораль, нравственность и этика в системе регулярного поведения 102.99 KB
  Ритуалы и этикет как регуляторы поведения Ритуал магическое действие имеющее космический смысл Основная функция упорядочить взаимоотношения между социумом и Виды ритуалов: календарный погребальный Свадебный рождение ребенка инициации ритуал гостеприимства и обмена дарами ритуальные жертвоприношения...
68503. Этика - внутренняя организационная система 123.88 KB
  Никакие кодексы не будут действовать если они не соответствуют с внутренним ощущением правильного справедливого Будут этики доиндустриального общества пророки учет интересов других людей подчинение младших старшим Индустриальное общество...