69043

Дискретизация непрерывных сигналов по теореме В.А. Котельникова

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

До сих пор речь шла о сигналах со спектром не превышающим частоту и где ширина спектра сигнала.3 где отсчетные значения соответственно амплитуды и фазы сигнала; и определяется соответственно через 2. среднее значение круговой частоты в спектре сигнала.

Русский

2014-09-29

200.5 KB

13 чел.

Лекция 2.12

Тема 2. Сообщение и сигнал.

Занятие 12. Дискретизация непрерывных сигналов по теореме В.А. Котельникова

Условия дискретизации реальных сигналов.

Примеры дискретизации детерминированных сигналов.

/1/. 54

/2/. 60-63

/6/. 39 (№ 2.5.1)

/7/. 170-171


Учебные вопросы.

Условия дискретизации реальных сигналов.

Сигналы с ограниченным спектром, не содержащим нулевой частоты.

До сих пор речь шла о сигналах со спектром, не превышающим частоту  и , где — ширина спектра сигнала.

В общем случаи сигнал может иметь спектр, ограниченный частотами , то есть

     (2.12.1)

В этом случае точки отсчета следуют через интервал

    (2.12.2)

При этом в каждой точке отсчета фиксируется две величины: амплитуда  и фаза .

Тогда сигнал может быть представлен рядом вида:

(2.12.3)

где ,— отсчетные значения соответственно амплитуды и фазы сигнала;

и  — определяется соответственно через (2.12.1) и (2.12.2).

— среднее значение круговой частоты в спектре сигнала.

Из выражения (2.12.3) следует, что функция отсчетов в данном случае представляет собой радиоимпульс амплитудой , и начальной фазой  с частотой заполнения  и огибающей, определяемой функцией вида  (рисунок 2.12.1)

Случайные сигналы.

Теорема Котельникова сохраняет свой смысл и применительно к случайным процессам (сигналам)  с ограниченым энергетическим спектром , но тогда — случайные числа, а ряд вида (2.11.23) или (2.12.3) понимается как сходящийся в среднем.

Сигналы с ограниченным спектром и конечной длительностью.

Энергия большинства реальных сигналов в основном сосредоточена в конечном интервале времени  и ограниченной полосе частот , хотя функция с ограниченным спектром имеет теоретически бесконечную длительность (см. Лекция 2.5)

Тогда разложение в ряд Котельникова (2.11.23) будет трансформировано в усеченный ряд:     (2.12.4)

где  — границы отсчетной области реального сигнала.

— необходимое число отсчетов в отсчетной области.

В частотности, если , то     (2.12.5)

т.е. по определению (2.3.5) параметр — это база сигнала.

Ряд Котельникова вида (2.12.3) при усечении имеет область изменения переменной , а следовательно, предусматривает  отсчетных точек.

Однако каждой точке соответствует 2 числа: отсчет амплитуды, и отсчет фазы.

Таким образом, всякий сигнал, имеющий реальную длительность  и реальную ширину спектра  , определяется с помощью  или  (2.12.6)

параметров, (чисел).

Такое определение раскрывает физический смысл понятия “база сигнала”.

Аналогичный результата получается при рассмотрении рядов Фурье.

Для сигнала длительностью  с ограниченным (усеченным) спектром коэффициенты разложения Фурье  практически равны 0 при , .

Тогда ряд Фурье вида (2.4.11) может быть записан    (2.12.7)

В более общем случаи, когда ,

   (2.12.8)

В случае (2.12.7) ряд содержит  слагаемых, каждое из которых содержит пару чисел  .

Таким образом, в разложении Фурье для описания сигнала необходимо  или   чисел. Изменение хотя бы одного из этих чисел приводит к новой (другой) реализации сигнала. Поэтому говорят, что сигнал с базой  имеет  степеней свободы.

Ряды (2.12.4), (2.12.7), (2.12.8) позволяют выражать конечными суммами случайные процессы, имеющие бесконечное число значений. Это позволяет заметно упростить решение многих задач теории связи, что и оправдывает замену реальных сигналов моделями с финитными спектрами и конечной длительностью.

Ограничение спектра реального сигнала путем его пропускания через фильтр с граничной частотой  приводит к потере части энергии сигнала, и как следствие, к потере части информации о сигнале (погрешности ). При этом

 (2.12.9) для детерминированной функции

и

 (2.12.10) для случайного процесса.

Примеры дискретизации детерминированных сигналов.

Задача.

Для колокольного импульса (рисунок 2.5.1)

    (2.12.11)

с параметрами , , найти интервал дискретизации при условии, что ошибка воспроизведения не должна превышать .

Решение.

Согласно (2.5.1), спектральная плотность сигнала (2.12.11) имеет вид,

,

где     (2.12.12)

При ограничении спектра сигнала с помощью фильтра с частотой среза   возникает погрешность , определяемая по формуле (2.12.9)

Известно, что — функция Крампа,

Тогда

 

Отсюда ; ;


 

А также другие работы, которые могут Вас заинтересовать

18986. Теория потребительского поведения. Закономерности развития потребительских предпочтений 1.04 MB
  Теория потребительского поведения Учебные цели Раскрыть содержание предельной полезности товара показать ее отличие от общей полезности и сформулировать закон убывающей предельной полезности. Уяснить правило максимизации полезности...
18987. Рынок труда. Понятие предельного продукта труда в денежном выражении 630.5 KB
  А. Титков УМК ЭТ Тема 10. Рынок труда Учебные цели Выяснить особенности спроса на труд. Определить понятие предельного продукта труда в денежном выражении и предельных издержек на труд. Выявить факторы определяющие изменение спроса на труд. Усвоить правил
18988. Распределение Максвелла 326.5 KB
  Лекция I 1. Распределение Максвелла. Статистическая физика изучает свойства макроскопических тел т.е. систем состоящих из огромного числа частиц. Например для аудитории с размерами учитывая что каждый моль воздуха занимает объем 224 л и содержит число Авогадро мол
18989. Квантовомеханическое описание 288 KB
  Лекция II 1. Квантовомеханическое описание. Казалось бы каноническое распределение Гиббса I.4.5 невозможно согласовать с требованиями квантовой механики так как обобщенные координаты и импульсы в соответствии с принципом неопределенности Гейзенберга не коммутирую
18990. Микроканоническое распределение 283 KB
  Лекция III 1. Микроканоническое распределение. Рассмотрим замкнутую макроскопическую систему занимающую объем и содержащую частиц. Как это следует из рис. III.1 любая макроскопическая система является замкнутой поскольку ее энергия практически не флуктуирует т.е. о
18991. Расчет с помощью программы “Fullprof” магнитной структуры магнетика. Магнитная структура DyB4 572.5 KB
  Давайте проведем расчет нейтронограммы соединения AB, для которого мы вручную рассчитывали нейтронограммы ядерного и магнитного рассеяния”. Как мы уже знаем, нейтронограмма должна содержать, по крайней мере, две фазы – ядерную и магнитную
18992. Работа и тепло 268.5 KB
  Лекция V 1. Работа и тепло. Обсудим физический смысл основного термодинамического тождества V.1.1 Поскольку давление это средняя сила отнесенная к единице площади а изменение объема то второе с...
18993. Температурная зависимость плотности энергии равновесного (черного) излучения 246 KB
  Лекция VI 1. Температурная зависимость плотности энергии равновесного черного излучения. Если для какойлибо системы удается найти связь между давлением объемом и энергией т.е. аналог уравнения состояния то можно вычислить все ее термодинамические величины. Для излу...
18994. О черных дырах 228 KB
  Лекция VII 1. О черных дырах. Научное представление о черных дырах возникло к концу 18 века. В 1799 г. Лаплас на основании ньютоновской теории тяготения и предположения о конечной скорости света показал что достаточно компактное массивное тело будет невидимым для внешнего ...