69108

Фрактальні зображення

Лекция

Информатика, кибернетика и программирование

Залежно від початкових умов функція що описує таку систему перетворень може наблизитися до нескінченності збігтися до певного скінченного числа числового діапазону або нескінченно варіюватися у певному діапазоні. Множина Мандельброта визначається таким рівнянням...

Украинкский

2014-09-30

49.5 KB

0 чел.

Лекція 17. Тема: Фрактальні зображення.

1. Фрактальні зображення

Фундатор напряму фрактальної геометрії Б. Мандельброт дав таке визначення фрактального зображення, або фрактала (від англ. fractionдріб): «Фракталом називається структура, що складається з частин, які подібні цілому». Можна взяти певну частину ідеального фрактала, збільшити її в будь-яку кількість разів, і вона в точності повторюватиме вихідний об'єкт або певну його частину. Візерунок, який зображено на рис. 5.5., називається множниою Мандельброта і є одним з найвідоміших фрактальних об'єктів.

Множина Мандельброта — представник групи фракталів, що називаються алгебричними, оскільки їх структура визначаєтъся алгебричними формулами. При побудові таких фракталів вхідні дані послідовно перетворюютъся за правилом, заданим цими формулами, і результати кожного наступного перетворення залежать від результатів, отриманих під час виконання попереднього. Залежно від початкових умов функція, що описує таку систему перетворень, може наблизитися до нескінченності, збігтися до певного скінченного числа (числового діапазону) або нескінченно варіюватися у певному діапазоні.

Множина Мандельброта визначається таким рівнянням:

Тут змінна Z і параметр С - комплексні числа, n - номер ітерації. Нагадаємо, що кожне комплексне число можна подати у вигляді w=a+bi де a i b – дійсні числа, і - уявна одиниця, тобто число, що задовольняє умову і2 =-1. Дійсні числа a=Re(w) i b=Im(w) називаються відповідно дійсною і уявною частинами комплексного числа w. Піднесемо комплексне число до квадрата: w2=(a+bi)(a+bi)=a2+abi+abi+i2b2=a2+2abi-b2. Застосувавши цю формулу до рівняння, що описує множину Мандельброта, отримаємо

Re(Zn)=(Re(Zn-1))2-(Im(Zn-1))2+Re(C);

Im(Zn)=2Re(Zn-1)Im(Zn-1)+Im(C).

Комплексне число зручно зображувати точкою на площині, абсциса й ордината якої відповідають дійсній та уявній частині числа. Щоб отримати зображення множини Мандельброта, потрібно виконати певну кількість ітерацій за визначеними вище формулами для кожної точки w прямокутника, лівим нижнім кутом якого є точка             (-2;- 1,25), а правим верхнім - точка (1,25; 1,25). Ітерації тривають доти, доки не стане істинною умова |Zn|>2 або доки не буде виконано певну кількість ітерацій. При цъому числом ітерацій визначається колір точки w, а дійсна та уявна частини комплексної константи С дорівнюють відповідним координатам w: Re(C)= wx, Im(C)= wy. Зауважимо, що модуль комплексного числа дорівнює квадратному кореню з суми квадратів його дійсної та уявної частин: .

Приклад 5.6.

Програма ех5_5 будує множину Мандельброта (рис. 5.5). Координати всіх точок екрана перетворюються так, щоб екран став зображенням прямокутника, лівим нижнім кутом якого є точка (-2; -1,25), а правим верхнім - точка (1,25; 1,25).

program ex5_5;

uses graph;

const  minx=-2;     {координати лівого нижнього кута}

          miny=-1.25;     {прямокутної множини точок}

maxx=1.25;     {координати правого верхнього кута}

 maxy=1.25;     {прямокутної множини точок}

 ScreenWidth=640;    {кількість пікселів на екрані}

 ScreenHeight=480;

var  dx, dy: real;     {приріст координат пікселів}

x, y, color: integer;    {поточні координати та колір піксела}

driver, mode: integer;    {графічний драйвер і режим}

{--------------------------------- визначення кольору піксела ---------------------------------}

function Calc_pixel (reC, imC: real): integer; 

{параметри – дійсна та уявна частини комплексного числа}

const

  max_iteration=128;     {кількість ітерацій}

var

  old_a: real;      {попереднє значення дійсної частини}

  iteration: integer;     {лічильник ітерацій}

  a, b: real;     {дійсна і уявна частини комплексного числа}

  z: real;      {довжина вектора z}

begin

  a:=0; b:=0; iteration:=0;

  repeat

     old_a:=a;      {запам’ятати попереднє значення}

     a:=a*a - b*b + reC;    {нова дійсна частина}

     b:=2*old_a*b + imC;    {нова уявна частина}

     iteration:= iteration+1;    {перейти до наступної ітерації}

     z:=a*a + b*b;     {квадрат модуля числа}

  until (z>4) or (iteration> max_iteration);

  Calc_pixel:= iteration;

end;

{--------------------------------- основна програма ---------------------------------}

begin

  driver:=detect;

  initgraph (driver, mode, ‘ ’);

  dx:=(maxx-minx)/ScreenWidth;

  dy:=(maxy-miny)/ScreenHeight;

  for y:=0 to ScreenHeight- 1 do

     for x:=0 to ScreenWidth-1 do

     begin

        color:=Calc_pixel (minx+x*dx, miny+y*dy);

        putpixel (x, y, color);

     end;

end.

Висновки

  •  Програма, що працює у графічному режимі, використовує графічні драйвери – файли, які містять інформацію про властивості відеоадаптерів. У середовищі Borland Pascal 7.0 графічні драйвери зберігаються у файлах з розширенням bgi.
  •  Бібліотека графічних підпрограм міститься в модулі Graph, записаному у файлі …\units\graph.tpu.
  •  Для використання графічних засобів комп’ютера слід ініціалізувати графічний режим роботи дисплейного адаптера.
  •  У графічному режимі кількість пікселів на екрані визначається роздільною здатністю відеоадаптера і дисплея. Роздільна здатність адаптерів VGA становить 640х480 пікселів. Лівий верхній кут екрана має координати (0, 0), правий нижній – (639б 479).
  •  Для зображення графічних об’єктів використовується кольорова палітра, що містить кольори, які кодуються цілочисловими значеннями 0, 1,…, maxcolor. На адаптері VGA одночасно може відображатися до 16 кольорів.
  •  Для виведення тексту в графічному режимі використовуються шрифти, записані у файлах з розширенням chr.
  •  При відображенні геометричних об’єктів використовуються формули перетворення логічних координат на екранні. Ці формули враховують зміни масштабу об’єкта і зсув початку координат.
  •  Для зсуву, повороту, стискання або розтягування геометричного об’єкта застосовують лінійні перетворення його координат. Лінійні перетворення характеризуються такими властивостями: прямі лінії залишаються прямими, паралельність прямих і пропорційність відстаней, а також відношення площ геометричних фігур зберігаються.
  •  Анімація об’єктів здійснюється копіюванням зображення в оперативну пам’ять і виведенням його копії на екран у нових координатах.
  •  Фракталом називається структура, що складається з частин, подібних до цілого.

Контрольні питання

  1.  Для чого призначені графічні драйвери?
    1.  Як ініціалізувати графічний режим?
    2.  Скільки кольорових відтінків можна відобразити за допомогою адаптера VGA?
    3.  Наведіть формули перетворення логічних координат на екранні.
    4.  Які перетворення координат об’єктів називаються лінійними?
    5.  Як відобразити текст у графічному режимі?
    6.  Як реалізувати анімацію?
    7.  Дайте визначення фрактального зображення.


 

А также другие работы, которые могут Вас заинтересовать

7803. Советская школа в период с 1930 по 1940гг 26 KB
  Советская школа в период с 1930 по 1940 гг. Советское правительство принимает ряд постановлений о школе, которые определили ход ее дальнейшего развития, направления в перестройке ее учебно-воспитательной работы, а также новые теоретические достижения...
7804. Советская школа и педагогика в 1945-1964 27 KB
  Советская школа и педагогика в 1945-1964 Реформы коснулись и народного образования. Получили развитие школы рабочей молодежи. Были увеличены масштабы подготовки рабочих через школы фабрично-заводского обучения, ремесленные и железнодорожные уч...
7805. Советская школа и педагогика в сер. 60-х - н. 90х годов 25.5 KB
  Советская школа и педагогика в сер. 60-х - н. 90х годов Советская школа в период с 1958 по 1992г. В 1958г. был принят закон об укреплении связи школы с жизнью и о дальнейшем развитии системы народного образования, который установил в нашей ст...
7806. Становление коммунистической системы воспитания и образования в России после Октябрьской революции 33.5 KB
  Становление коммунистической системы воспитания и образования в России после Октябрьской революции Революционная перестройка школы. Первые декреты Советской власти по народному образованию и проведение их в жизнь. Великая Октябрьская социалистическа...
7807. Сухомлинский и Корчак и их педагогические идеи 30 KB
  Сухомлинский и Корчак и их педагогические идеи Сухомлинский создал оригинальную педагогическую систему, основывающуюся на принципах гуманизма, на признании личности ребёнка высшей ценностью, на которую должны быть ориентированы процессы воспитания и...
7808. Тенденции развития образования в современном мире 39.5 KB
  Тенденции развития образования в современном мире Состояние образования в современном мире сложно и противоречиво. С одной стороны, образование в 20-м веке стало одной из самых важных сфер человеческой деятельности огромные достижения в этой област...
7809. Школа в России в первой половине 19 века 39.5 KB
  Школа в России в первой половине 19 века. Развитие культуры России в первой половине XIX века проходило в противоречивых условиях. С одной стороны, экономическое развитие вызывало потребность в грамотных людях, стимулировало развитие науки и техники...
7810. Философия эпохи Возрождения (ренесанса) 58.5 KB
  Философия эпохи Возрождения В развитых странах Европы в период 12-13 век происходит развитие торговли и ремесел. Происходит рост производительности труда. Развиваются города. Они становятся центрами экономической и культурной жизни. Это была вершина...
7811. Немецкая идеалистическая философия. Философия Гегеля 38.5 KB
  Немецкая идеалистическая философия. Философия Гегеля Развитие немецкой классической философии достигает вершин в творчестве Георга Гегеля (1770-1831). Феноменология духа, Наука логика, Энциклопедия философских наук...