69152

УСТОЙЧИВОСТЬ ТОНКОСТЕННЫХ СТЕРЖНЕЙ

Лекция

Астрономия и авиация

Стержень - элемент удлинённой формы, работающий на растяжение-сжатие от продольных (осевых) сил (рис. 12.1,а). Стержни в авиационных конструкциях - это стрингеры крыла, фюзеляжа, оперения, пояса лонжеронов, тяги проводки управления и т.д.

Русский

2014-09-30

585.5 KB

22 чел.

PAGE   \* MERGEFORMAT 161

 Министерство образования и науки Украины

Национальный авиационный университет

Аэрокосмический институт

Кафедра конструкции летательных аппаратов

 

ЛЕКЦИЯ № 12 (3)

по дисциплине "Конструкция и прочность летательных аппаратов"

12. УСТОЙЧИВОСТЬ ТОНКОСТЕННЫХ СТЕРЖНЕЙ

Составитель проф. Радченко А.И.

 

Киев  2009

12. УСТОЙЧИВОСТЬ ТОНКОСТЕННЫХ СТЕРЖНЕЙ

 Стержень - элемент удлинённой формы, работающий на растяжение-сжатие от продольных (осевых) сил (рис. 12.1,а).

Стержни в авиационных конструкциях - это стрингеры крыла, фюзеляжа, оперения, пояса лонжеронов, тяги проводки управления и т.д. Они имеют обычно тонкостенные поперечные сечения открытого или замкнутого профиля.

 Открытые тонкостенные стержни (рис. 12.1,б) изготавливаются прессованием, прокаткой или штамповкой из тонких листов. их характерными  сечениями являются профили уголкового, швеллерного, таврового и двутаврового типа.

Рис. 12.1. Примеры стержней, применяемых в авиаконструкциях

Наиболее распространёнными стержнями с замкнутыми сечениям являются тонкостенные трубы. В ряде случаев замкнутые сечения получаются после приклёпывания открытого профиля к обшивке (рис. 11.1,в).

Особенностью тонкостенных стержней является недостаточная жёсткость поперечных сечений и возможность их искажения под действием внешней сжимающей силы.       

   Если соотношения размеров стержня таковы, что в про-цессе нагружения не происходит существенного изменения формы и. размеров поперечных сечений, то такой стержень при действии продольной сжимающей силы претерпевает общую потерю устойчивости с изгибом его оси (рис.12.2,а).

Рис.12.2.  Виды потери устойчивости                                        поэтому        разрушение
                 тонкостенных  стержней
                              длинных        изолированных

стержней при сжатии обычно происходит от общей потери устойчивости.

Короткие тонкостенные стержни обладают повышенной изгибной жёсткостью в продольном направлении и при действии сжимающей нагрузки чаще разрушаются в результате выпучивания тонких стенок (рис. 11.2,б) без искривления оси, то есть в результате местной потери устойчивости.  

 12.1. КРИТИЧЕСКИЕ НАПРЯЖЕНИЯ ОБЩЕЙ ПОТЕРИ

     УСТОЙЧИВОСТИ

 12.1.1. Критические напряжения изолированного стержня

 Критические напряжения изолированного стержня при общей потере устойчивости определяются по формуле Эйлера

    ,    (12.1)   где     -радиус инерции поперечного сечения стержня;

 а   -длина стержня (рис. 11.3,a);

с - коэффициент, зависящий от характера опирания торцов:

 при шарнирном опирании   с = 1;      

 при защемлении с = 4;

 для приторцованных концов с = 2.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        12.1.2. Критические напряжения, стержня, работающего
                         совместно с обшивкой.

Если стержень (стрингер) работает не изолированно, а  совместно с обшивкой, то общая потеря устойчивости происходит с изгибом его оси в плоскости, перпендикулярной обшивке. Кроме того, на продольный изгиб в этом случае совместно со стрингером, как  единое целое, работает и часть обшивки, которая называется присоединенной.

В связи с этим критические напряжения общей потери устойчивости стрингера с присоединённой обшивкой обычно будут выше, чем изолированного.

Момент инерции сечения в формуле (12.1) для этого случая определяется относитель-но центральной оси x'-x' (рис.12.3,б) с учётом площади присоединённой обшивки.

       Общая потеря устойчивости пояса балочного лонжерона крыла при сжатии невозможна. Скреплённые с поясом стенка и обшивка стесняют изгиб его оси

Рис 12.3. Расчет момента инерции сечения стержня во всех направлениях.

                Если критические напряжения, определенные по формуле (12.1), выше предела пропорциональности, то для дальнейшего расчёта следует использовать формулу

    ,   (12.2)

где    = b/кр; кр - величина, определённая по формуле (12.1).

12.2. КРИТИЧЕСКИЕ НАПРЯЖЕНИЯ  МЕСТНОЙ  ПОТЕРИ    
        УСТОЙЧИВОСТИ
 

При расчёте критических напряжений местной потери устойчивости тонкостенный стержень рассматривается как система прямоугольных пластинок с размерами а, b и (рис. 12.3,а), соединённых между собой вдоль длинных краёв и по торцам в плоскостях нервюр.     

 Haпример, стрингер, представленный на рис. 12.4, состоит из пяти элементов - пластинок, соединённых между собой. Элементы 1 и 5 имеют по три края; шарнирно опертых (два поперечных – на нервюрах и один продольный – на остальной части стрингера) и по одному продольному краю –свободному. Элементы 2, 3, 4 по всем четырем краям оперты.

Расчет критических напряжений каждого элемента проводится по формуле

  , (12.3)  

где

 bi - характерные размеры i -го элемента;

ki  - коэффициент опирания i -го элемента.

В рассмотренном примере величины k1 и k2 равны:

k1 = 0,425 + (b/а)2

k2 = k3 = k4 = 4

В таблице 12.1 представлены схемы опирания элементов (полок и стенок) для стержней (стрингеров) различной формы поперечного сечения.

На рис. 12.5 рассмотрены примеры определения коэффициентов k.

рис. 12.5. примеры определения коэффициентов k

В случае когда кр.м > р расчёт критических напряжений проводится с использованием формулы (12.2).

          За критические напряжения местной потери устойчивости изо-лированного  стержня принимают меньшее из всех  напряжений кр.м.

 Для стержней, работающих совместно с обшивкой за величину критического напряжения, местной потери устойчивости принимают напряжения, определенные по формуле смешения,  (12.4)

,

где кр.мi - критическое напряжение местной потери устойчивости i-го элемента;  

f - площадь сечения i -го элемента.

Таблица 12.1

 За разрушающее напряжение стрингера принимается наименьшее из критических напряжении общей и местной потери устойчивости.

  разр =(кр.мi)min   (12.5)

  12.3. РАЦИОНАЛЬНЫЕ    ФОРМЫ
        ПОПЕРЕЧНЫХ      СЕЧЕНИЙ  
        ТОНКОСТЕННЫХ СТЕРЖНЕЙ

Так как тонкостенные стержни могут разрушаться и от местной и от общей потери устойчивости, то размеры поперечных сечений их элементов должны быть такими, чтобы обеспечить, по возможности, наибольшие критические напряжения обеих форм потери устойчивости. желательно, чтобы элементы стержней были равноустойчивы.     

Так, например, соотношение размеров b2 и b3  z -образного стрингера
(рис.12.6) можно определить исходя из предпо-ложения, что критические напряжения 1 и 2 элементов одинаковы, т.е  

.

   Так как , а , то при постоянной толщине.

Рис. 12.6. К расчету критических                Наличие  отгибов  b3 сильно  увеличивает

напряжений элементов стержня     коэффициент  k2   и  повышает  устойчивость

полки b2 стрингера. Наивыгоднейшая ширина отгиба b2 = (0,25…0,3)b3.

Уменьшение b3 ведёт к резкому падению устойчивости поддерживаемой стенки b2 , а увеличение b3 , не оказывает влияния на устойчивость полки b2 , но ведёт к значительному ухудшению устойчивости самого отгиба, работающего как пластинка с одним свободные краем.

Для подкрепления стенок прессованных профилей применяют утолщения свободных краёв - бульбы (таблица 12.1), играющие ту же роль, что и отгибы для штампованных.

Утолщение элементов 1, 5 и 3 стрингера, показанного на рисунке. 12.4 (см. первую строку таблицы 2.1), осуществляется как с целью увеличения критических напряжений их местной потери устойчивости, так и для увеличения критических напряжений общей потери устойчивости стрингера, тo же самое следует отметить и у стержней типа тавр и двутавр, полки которых, как правило, выполняются толще стенки. Принятое в них распределение материала по сечению даёт значительное увеличение момента инерции сечения относительно оси, параллельной полкам, а, следовательно, и увеличение критических напряжений общей потери устойчивости.

ВОПРОСЫ

  1.  Дайте определение понятия "стержень"?
  2.  Приведите примеры использования стержней с открытым и замкнутым сечением в авиационных конструкциях.
  3.  Дайте определение понятия " общая потеря устойчивости стержня".
  4.  Дайте определение понятия "местная потеря устойчивости стержня".
  5.  Как определяются критические напряжения изолированного стержня?
  6.  Как определяются критические напряжения стержня, работающего
    совместно с обшивкой?
  7.  Дайте определение понятия "присоединённая обшивка".
  8.  Возможна ли общая потеря устойчивости пояса балочного лонжерона крыла при сжатии?
  9.  Как определяются критические напряжения, если они выше предела пропорциональности?
  10.  Как определяются критические напряжения местной потери устойчивости тонкостенного стержня?
  11.  Опишите применение формулы смешения?
  12.   Опишите рациональные  формы поперечных сечений  тонкостенных стержней.
               
              


 

А также другие работы, которые могут Вас заинтересовать

29373. Языковые процессоры и их основные типы 29.5 KB
  Совмещение этих требований в одном языке оказалось трудной задачей поэтому появились средства для преобразования текстов с языка понятного человеку на язык устройства. В первом случае его называют интерпретатором входного языка а во втором компилятором. Интерпретатор последовательно читает предложения входного языка анализирует их и сразу же выполняет а компилятор не выполняет предложения языка а строит программу которая может в дальнейшем быть запущена для получения результата. Такое задание предполагает определение правил построения...
29374. Фазы трансляции программ 32.5 KB
  На вход лексического анализатора подаётся последовательность символов входного языка. ЛА выделяет в этой последовательности простейшие конструкции языка которые называют лексическими единицами лексемами. Генератор каждому символу действия поступающему на его вход ставит в соответствие одну или несколько команд выходного языка. В качестве выходного языка могут быть использованы команды устройства команды ассемблера либо операторы какоголибо другого языка.
29375. Основные функции сканера 34 KB
  Лексический анализ программ один из основных этапов фаз трансляции программ выделение в исходной программе элементарных единиц языка таких как идентификаторы константы ключевые слова символы операций разделители и др. Лексический анализ завершается преобразованием выделенных единиц языка в некоторую унифицированную форму обычно числовую.Часть транслятора которая выполняет лексический анализ называется сканером лексический анализатор. Лексический анализатор сканер должен распознать идентификаторы константы ключевые слова...
29376. Принципы работы сканера 95.5 KB
  Синтаксис целых констант представляется: целое ::=цифра знак цифра целое цифра знак ::= Для представления грамматики состояния целых констант диаграмма имеет вид:Вершины соответствуют состояниям автомата и определяются нетерминальными символами. Построим диаграмму состояний для автомата который распознает лексемы трех типов: целые константы десятичные константы идентификаторы идентр ::=буква идентр буква идентр цифра десятичная константа: дес.число цифра смеше число цифра смеше число ::= целое целое ::=цифра знак цифра целое цифра...
29377. Нисходящий грамматический разбор с возвратами 83 KB
  Суть данного метода можно представить в виде следующей последовательности шагов выполнение которых повторяется в процессе чтения входной цепи символов. Если активная вершина помечена а T то сравнить его с очередным символом входной цепочки. Сравниваемые символы совпали тогда сделать активной вершиной дерева лист правее а и перейти к следующим символам входной цепочки. Символы не совпали то выполним возврат к предыдущему уровню дерева разбора и соответствующему символу входной цепочки.
29378. Грамматический разбор методом операторного предшествования 68.5 KB
  Метод операторного предшествованияДанный метод относится к классу восходящих методов синтаксического анализа.Дерево разбора:Идея метода: входная цепочка символов просматривается слева направо пока не будет найдено подвыражение имеющее более высокий уровень предшествования чем соседние операторы. Для реализации метода необходимо установить отношение предшествования между всеми парами операторов грамматики.
29379. Основные функции и построение семантического анализатора программ 43 KB
  При работе семантических программ широко используется набор данных с организацией в виде стека. Операнды переписываются в выходную строку а операторы заносятся в стек. В зависимости от приоритета операторов при записи в стек оператор может вытолкнуть из стека другой оператор который последовательно записывается в выходную строку. Работа со стеком организуется так:1.
29380. Семантическое дерево как форма представления программ в языковых процессорах САПР 38 KB
  Семантическое дерево 2 польская запись 3 список тетрад. Семантическое дерево СД модифицированное дерево грамматического разбора из которого исключили вершины соответствующие нетерминальным символам.Пример: E→ET TT→TM MM→E a b cabcДерево разбора:При построении СД скобки не требуются т.
29381. Польская запись как форма представления программ в языковых процессорах САПР 24 KB
  операнды следуют в том же порядке что и в исходной записи.Пример: 1 ab инфиксная форма записи; ab польская запись постфиксная.2 abc инфиксная форма записи abc польская запись.Формально построение польской записи описывается следующим грамматическим правилом: операнд ::= константа идентификатор операнд операнд оператор оператор ::= Если должны быть учтены операторы с одним операндом то грамматическое правило должно быть расширено с учётом введения таких операторов добавляется бинарный и унарный оператор.