69164

Построение эпюр поперечных сил Q, изгибающих М и крутящих моментов Мz в сечениях крыла

Лекция

Астрономия и авиация

Построение эпюр поперечных сил Q изгибающих М И крутящих моментов Мz В СЕЧЕНИЯХ КРЫЛА 8. Уравновешиваются эти нагрузки опорными реакциями rф крыла на фюзеляже рис. Площадь каждой iой трапеции численно равна приращению поперечной силы...

Русский

2014-09-30

696.5 KB

29 чел.

117

Министерство образования и науки Украины

Национальный авиационный университет

Аэрокосмический институт

Кафедра конструкции летательных аппаратов

 

ЛЕКЦИЯ № 8 (3)

по дисциплине "Конструкция и прочность летательных аппаратов"

8. Построение эпюр поперечных сил Q,
изгибающих М И крутящих моментов Мz
В СЕЧЕНИЯХ КРЫЛА

Составитель проф. Радченко А.И.

 

Киев  2009

8. Построение эпюр поперечных сил Q,
изгибающих М И крутящих моментов Мz
В СЕЧЕНИЯХ КРЫЛА

8.1. Эпюры Q и М.

 При построении эпюр поперечных сил Q и изгибающих моментов М крыло рассматривается как двухопорная балка с консолями, которая нагружена распределенными аэродинамической (воздушной) qВ и массовой qкp нагрузками, а также  сосредоточенными силами от агрегатов Рагр. Уравновешиваются эти нагрузки опорными реакциями rф крыла на фюзеляже (рис. 8.1).

считаем, что нагрузка на участке фюзеляжа воспринимается конструкцией фюзеляжа.

Эпюры Q и М можно строить сразу от разности погонных нагрузок

. (8. 1)

Здесь, как и ранее,  Г – относительная циркуляция (поправочный коэффициент, задаваемый нормами прочности)

Величина поперечной силы в
сечении
z определяется суммированием нагрузки, расположенной по одну сторону от рассматриваемого сечения:

.    (8.2)

Изгибающий момент

Рис. 8.1 Построение эпюр Q и М                       .          (8.3)

                При  построении  эпюр  Q  и М обычно пользуются  методом
численного интегрирования
.  

Крыло  разбивают на  ряд участков длиной Δzi  и  считают, что на  каждом из  них  погонная  нагрузка изменяется по линейному закону. Площадь,  ограниченная кривой q (z), при  этом  будет  состоять  из  ряда  трапеций.

Площадь  каждой  i-ой  трапеции  численно равна приращению поперечной силы на данном участке крыла:

ΔQi = 0,5 (qi + qi-1) Δzi.

Последовательное суммирование приращений ΔQi от свободного конца крыла до рассматриваемого сечения z дает величину поперечной силы:

где п — число участков крыла от свободного конца до сечения  z.

Аналогично интегрируют эпюру M. Для участка крыла Δzi, определяют приращение изгибающего момента:

ΔMi = 0,5 (qi + qi-1) Δzi.

Суммируя приращения ΔМi, получают изгибающий момент в сечении:

Величину     поперечной силы ΔQaгp и  изгибающего момента  ΔМагр
(рис. 8.1, штриховая  линия) от действия сосредоточенных нагрузок
Рагр удобнее учитывать отдельно.

8.1.2  Построение эпюр Q и М для стреловидного крыла

Построение эпюр Q и М для стреловидного крыла проводят так же, как и для прямого. При этом распределение погонной нагрузки q ведут вдоль средней линии крыла (рис. 8.2).

Рис. 8.2. распределение погонной нагрузки q вдоль средней линии крыла

Определяя нагрузки q по ранее приведенным формулам, под b понимают хорду, нормальную к средней линии крыла.

8.1.3.Приближенное определение величин Q и М
                       
в сечении крыла.

Если погонная нагрузка распределяется пропорционально хордам крыла, то Q и М в любом сечении можно определить без  построения эпюр. В этом случае в сечении z (см. рис. 8.2) поперечная сила

,  (8.4)

а изгибающий момент

.    (8.5)

Здесь — площадь    отсеченной    части    крыла;

— расстояние от рассматриваемого сечения до центра тяжести площади отсеченной части крыла (рис. 8.2);

b и bк — соответственно текущая и концевая хорды крыла.

8.2. Построение эпюр крутящих моментов Мz 

  Эпюра крутящих моментов Мz строится относительно оси z, вдоль которой  велось  распределение  погонной  нагрузки q = qBqкр.

Ось z можно выбрать произвольно, однако удобнее совмещать ее со средней линией крыла (см. рис. 8.2).

Погонный момент относительно оси z от распределенных аэродинамических и массовых сил (рис. 8.3)

,

где хд – расстояние от передней кромки  крыла до линии центров давления;

Рис. 8.3. Определение моментов Мизг, Мz        хт – расстояние от передней кромки

     и силы Q в сечении крыла                   крыла до линии центров тяжести сечения крыла.

сосредоточенные моменты от сил агрегатов (рис. 8.4)

         ,

   где Рх - продольная сила (тяга двигателя);

  h - плечо силы Рх относительно оси z.

Интегрируя эпюру погонных моментов тz с учетом сосредоточенных моментов ΔМz, получим эпюру моментов Мz (рис. 8.4) относительно оси z:

         

                                                                       

Рис. 8.4. Определение сосредоточенных
              моментов от сил агрег
атов                                                                                         .

 Имея в сечении крыла момент Мz и поперечную силу Q (рис. 8.5), можно найти координату точки приложения нагрузки, действующей на отсеченную часть крыла.

Рис. 8.5. Определение координаты точки приложения нагрузки, действующей

               на отсеченную часть крыла

При известном положении центра жесткости в рассматриваемом сечении крыла величину крутящего момента Мz можно определить как произведение  силы Q на  плечо d до центра жесткости. Более подробно этот вопрос рассмотрен ниже.

8.2.1. Влияние на  нагружение грузов, размещаемых в крыле.

В крыле может размещаться топливо и другие грузы. На тяжелых транспортных самолетах вес топлива, заливаемого в крыльевые баки, может составлять 50% и более от взлетного веса. К крылу могут также подвешиваться контейнеры с оборудованием, топливом. Поэтому важно уметь оценивать влияние грузов на нагруженность крыла.

массовые силы в полете снижают нагрузку крыла, они способствуют уменьшению поперечных сил и изгибающих моментов в сечениях крыла. Для небольших самолетов уменьшение изгибающих моментов в корневом сечении за счет массовых сил может составлять 10…15% , а для тяжелых — 30...50%.

При посадке и движении самолета по грунту, когда подъемная сила мала, нагрузка крыла определяется, в основном, инерционными силами от масс крыла и грузов, размещенных на нем. Направлена она вниз и тем больше, чем больше вес грузов в крыле. Из эпюр поперечных сил для крыла транспортного самолета (рис. 8.6) с топливом в крыле (сплошная линия) и без топлива (штриховая) видно, что в полете топливо и двигатели разгружают крыло, а при движении по грунту - догружают.

При проектировании стремятся выбирать параметры самолета так, чтобы эксплуатационная нагрузка крыла при движении по грунту не превышала нагрузки полетного расчетного случая D.

Случай d соответствует обратному нагружению крыла, эксплуатационная перегрузка равна 0,5nэмах . Нагрузка крыла при движении по грунту определяется величиной перегрузки пэгр и весом конструкции крыла и грузов, размещенных в нем.

 из условия, что нагрузка в корневом сечении крыла при движении самолета по грунту  не должна превышать нагрузки крыла  для случая D, найдем наибольшее допустимое значение перегрузки пэгр. При этом Qэгp = Qэd. 

Из формулы (8.4). поперечная сила в корневом сечении крыла в случае d равна:


            Рис. 8.6 Сравнение эпюр q в полете

                                и при движении по земле

 (а)        

          в случае движения самолета по грунту

                                 (б)

Здесь Gкp, GT, Gдвигσ - соответственно вес конструкции крыла, топлива, размещенного в крыле, и двигателей, установленных на крыле;

приведенный относительный вес конструкции и грузов консольной части крыла.

Используя зависимости (а), (б) и условие Qэгр = Qэd, получим выражение для величины допустимой перегрузки при движении по грунту:

                                                    (в)

 Подобное выражение можно получить и для соотношения изгибающих моментов, которые, в основном, и определяют прочность крыла. Однако его удобнее получать для конкретного самолета, так как значения изгибающих моментов в сечении зависят от расстояний грузов и агрегатов, расположенных в крыле, до рассматриваемого сечения. Пользуясь соотношением (в), можно решать практические задачи.

Пример. Определить допустимую эксплуатационную перегрузку nэгр при разбеге тяжелого транспортного самолета (G = 170 000 кгс; nэmax = 2,5;
Ζкр = 0,12; ζдвΣ =0,05; ζт =0,4 при Sотс/S = 0,4). Все топливо заливается в крыльевые баки.

В рассматриваемом случае

ζ' = 0,12 + 0,4 + 0,5 · 0,05 · 2,5 = 0,58;

nэгр = 0.5 nэmax(1- ζ')/ ζ' = 0,9

Найдем теперь, как нужно изменить массу заправляемого топлива, если по каким-либо причинам (переход на грунтовой аэродром) величина эксплуатационной перегрузки увеличится до nэгр1 = 1,2. В этом случае, используя формулу (в), найдем,   что

ζ'1 = 1/(1+ nэгр1/0,5 nэmax ) = 0,51.

Чтобы обеспечить такое значение ζ'1 , а, следовательно, безопасную работу конструкции с nэгр1 = 1,2, нужно уменьшить массу заправляемого топлива на

ΔG = ΔζG = 0,07·170 000 = 11 900 кг.

Здесь

Δζ = ζтζт1 = 0,40 - 0,33 = 0,07;

ζт1 = ζ'1 ζкр - ζдвΣ(S/Sотс) = 0,51- 0,12 - 0,5 - 0,05·2,5 = 0,33.

ВОПРОСЫ

  1.  Как рассматривается крыло при построении эпюр внутренних силовых факторов (Q, M, Mz)?
  2.  Как воспринимается нагрузка на участке фюзеляжа?
  3.  Как определяется погонная нагрузка на крыло q, которая является разностью погонных нагрузок q = qв - qкр?
  4.  Как определяется величина поперечной силы Q в сечении z?
  5.  Как определяется величина изгибающего момента в сечении z?
  6.  В чем заключается метод  численного интегрирования при  построении  эпюр  Q  и  М?
  7.  Как производится построение эпюр Q и М для стреловидного крыла?
  8.  Как в любом сечении крыла можно определить Q и М без  построения эпюр?
  9.  Как строится эпюра крутящих моментов Мz?
  10.   Как учитываются сосредоточенные крутящие моменты от сил агрегатов?

                                                                


 

А также другие работы, которые могут Вас заинтересовать

37471. Классики мировой философии о политику, государстве и праве 26.46 KB
  Противопоставление Гераклитом аристократического права и государства справедливым законам за которые люди должны биться как за стены родного города. Четыре свойства государства: мудрость мужество рассудительность справедливость. Структура государства. Разработал теорию возникновения и существования государства ради достижения благой жизни.
37472. Психологическая защита в социуме 968 KB
  Ключникова посвящена теме психологической защиты человека живущего в бурном потоке современного социума. В ней описываются психологические механизмы и законы защищенности человека помогающие человеку стать защищенным и успешным мастером жизни. Книга богато иллюстрированная историями из обширной консультативной практики автора содержит многочисленные советы приемы и методы вдумчивое применение которых сделает человека значительно более уверенным и успешным.Автор развивает и конкретизирует подход суть которого состоит в разумном сочетании...
37473. Гісторыя Беларусі (у кантэксце сусветнай гісторыі) 8.25 MB
  Мандрык Гісторыя Беларусі у кантэксце сусветнай гісторыі Віцебск 2008 УДК 947. 4 Беи 73 Г 46 Друкуецца па рашэнні навуковаметадычнага савета Віцебскага філіяла Установы адукацыі Федэрацыі прафсаюзаў Беларусі â€œМіжнародны інстытут працоўных і сацыяльных адносінâ€. Гісторыя Беларусі у кантэксце сусветнай гісторыі. 4 Беи 73 Г 46 Віцебскі філіял Установы адукацыі Федэрацыі прафсаюзаў Беларусі â€œМіжнародны інстытут працоўных і сацыяльных адносінâ€.
37475. Проектирование и конструирование талевого блока газовой скважины 1.12 MB
  5 Диаметр отверстия в стволе ротора мм 700 Расчетная мощность привода ротора кВт 370 Мощность бурового насоса кВт 950 Расчетная мощность на валу буровой лебедки кВт 670 Наибольшая оснастка 5x6 Диаметр каната мм 28 Диаметр шкивов наружный мм 1 шкив 1000; 10 шкивов 900 Максимальная подача бурового насоса л с 50.1 Оснастка талевой системы Порядок прохождения талевого каната через канатные шкивы кронблока и талевого блока имеет существенное значение для распределения нагрузки на ноги вышки и для правильной навивки каната на барабан...
37477. Изучить среду Microsoft Visual Studio 6.0. Изучить структуру программы на языке C++ 1.17 MB
  В язык С были добавлены новые возможности: виртуальные функции перегрузка функций и операторов ссылки константы пользовательский контроль над управлением свободной памятью улучшенная проверка типов и новый стиль комментариев . Его новые возможности включали множественное наследование абстрактные классы статические функциичлены функцииконстанты и защищённые члены. Строка под главным меню содержит панель инструментов полезным свойством которой является выпадающий список функций программы с помощью которого можно быстро...
37478. Метод мурашиних колоній 235.5 KB
  Технічне завдання Розробити програму що здійснює пошук оптимального шляху між двома клітинками ігрового поля яке являє собою двовимірну матрицю клітинок заданого розміру. Пошук шляху повинен здійснюватись за допомогою алгоритму мурашиної колонії параметри алгоритму повинні налаштовуватись користувачем вручну. Пізніше список використовується для визначення довжини шляху між вузлами. Справжня мураха під час переміщення по шляху залишає за собою деяку кількість феромону.
37479. МЕТОДОЛОГИЯ МОДЕЛИРОВАНИЯ ДАННЫХ В СРЕДЕ ERWIN 993 KB
  2] Зависимые и независимые сущности.9] Избыточные сущности [9. На стадии проектирования создаются логические модели трех уровней: Entity Reltion Digrm Диаграмма сущностьсвязь и KeyBsed model Модель данных основанная на ключах и Полная атрибутивная модель Диаграмма сущностьсвязь ERD Entity Reltionship Digrm определяет сущности и их отношения. Модель данных основанная на ключах описывает структуру данных системы в которую включены все сущности и атрибуты в том числе ключевые.