69185

Преобразователь оборотов

Лекция

Физика

Преобразователь оборотов преобразователь предназначен для непрерывного преобразования электрического частотного сигнала датчика оборотов в пропорциональный ему выходной электрический сигнал постоянного тока 001мА. Преобразователь предназначен для работы при температуре...

Русский

2014-10-01

33 KB

0 чел.

1.Преобразователь оборотов.

1.1.Назначение.

Преобразователь оборотов (преобразователь) предназначен для непрерывного преобразования электрического частотного сигнала датчика оборотов в пропорциональный ему выходной электрический сигнал постоянного тока 0…0,1мА.

1.2.Технические данные.

Преобразователь предназначен для работы при температуре окружающей среды от 0 до +500С.

Преобразователь питается от сети переменного тока 220±1020В и частотой 50±5Гц.

Устройство "Контроль" преобразователя питается напряжением постоянного тока 24В от общего выпрямителя.

Мощность, потребляемая преобразователем от сети не более 8Вт при cosφ=0,92.

Значения входных и выходных величин параметров преобразователя приведены в таблице.

   

      Шкала

      Частота

          Гц

    

          Еmin

           Emax

      Выходной

         сигнал

0…4000 об/мин

      50…4000

Электрическое сопротивление изоляции цепей преобразователя между собой и относительно корпуса составляет не менее 20 МОм при температуре 25±100С и относительной влажностью 80%.

Основная погрешность преобразования угловой скорости в выходной ток в рабочем диапазоне оборотов (5…100% номинальных оборотов) не превышает 1,5% от максимального значения выходного сигнала.

Нормальная работа преобразователя не нарушается при коротких замыканиях входа- выхода после устранения этих замыканий.

Выход преобразователя не заземлять!

Преобразователь рассчитан на подключение двух показывающих приборов микроамперметров 0-100мА шкала от 0..4000 об/мин.

Устройство "Контроль" независимо от оборотов контролируемого вала выдает выходной сигнал, равный 2000±2,5% об/мин при подаче на схему "Контроль" постоянного напряжения 24В с помощью кнопки, устанавливаемой на БЩУ под показывающим прибором.

При наличии внешнего магнитного поля, напряженностью до 50 эрстед, образованного постоянным током или напряженностью 1 эрстед,  образованного переменным током частотой 50Гц при самой неблагоприятной фазе и направлениям поля, погрешность не превышает основной погрешности.

При обрыве или коротком замыкании в линии связи между преобразователем и датчиком выходной сигнал равен 0.

1.3.Устройство и работа изделия.

1.3.1. В состав изделия входят:

  •  датчик оборотов                     01;
  •  преобразователь                     01;
  •  показывающий прибор          02;
  •  кнопка                                      01;
  •  инструкция и паспорт.

Работа преобразователя оборотов основана на принципе преобразования частотного сигнала переменного тока в сигнал постоянного тока.

Источником сигнала является датчик оборотов, который выдает на вход преобразователя сигнал переменного тока частотой, пропорциональной оборотам контролируемого вала.

Выходной сигнал вторичного преобразователя измеряется двумя микроамперметрами, шкалы которых отградуированы в оборотах в минуту.

Принципиальная электрическая схема измерения скорости вращения приведена на рис. .

1.3.2.Работа устройства.

Выходной сигнал датчика оборотов, имеющий при различных оборотах различную амплитуду и частоту, через резистор R, и конденсатор С, подается на ограничитель, выполненный на диодах Д1 и Д2. После ограничителя по амплитуде до 0,5В сигнал усиливается по напряжению в усилителе, выполненном на триоде Т1. Напряжение питания усилителя стабилизированное. Роль стабилизирующего элемента выполняет стабилитрон Д4.

С коллектора транзистора Т1 сигнал подается на триггер Шмидта, выполненный на транзисторах Т2 и Т3.

Прямоугольные импульсы. Получаемые из триггера Шмидта, дифференцируются …………. R11, С5 и подаются на одновибратор, выполненный на транзисторах разной проводимости Т4 и Т5.

Для обеспечения линейности шкалы показывающих приборов длительность с одновибратора выбрана равной 1/4 периода, наивысшей частоты вращения ротора (4000 об/мин).

С коллектора транзистора Т4 прямоугольные импульсы через резисторы R23 и R26 подаются на показывающие приборы А1 и А2.

Подстроечные резисторы R25 и R28 служат для установки через показывающие приборы тока 0,1мА ( при 4000 об/мин), а конденсаторы С10 и С11- для сглаживания пульсаций на показывающих приборах. При отсутствии сигнала на входе одновибратора оба транзистора Т4 и Т5 открыты, на переходе эмиттер-коллектор транзистора Т4 падает небольшое напряжение 0,5В. Через показывающие приборы идет небольшой ток. Чтобы при отсутствии входного сигнала стрелки показывающих приборов установить на ноль, через них создается противоток через резисторы R24 и R27 с помощью резистора R29.

Т. к. одновибратор выбирает импульсы одинаковой длительности, то ток через показывающие приборы пропорционален частоте входного сигнала, т.е. скорости вращения контролируемого вала.

Для проверки исправности показаний комплекта измерения скорости вращения вторичный преобразователь имеет устройство "Контроль", обеспечивающее отклонение стрелки показывающего прибора на 2000 об/мин ±2,5%.   

При подаче на реле Р1 напряжения, оно срабатывает и через контакты 6 и 7 подает питание на мультивибратор, выполненный на транзисторах Т6 и Т7. Импульс, генерируемый мультивибратором, через контакты 3 - 4 реле Р1 подается на вход преобразователя. Частота импульсов мультивибратора и составляет 2000 об/мин ±2,5%.

Роль стабилизирующего элемента выполняет диод Д6.

Преобразователь выполнен на кремниевых транзисторах, имеющих малый коллекторный ток, следовательно, незначительную зависимость параметров от температуры.

Питание преобразователя осуществляется от стабилизированного источника питания. Стабилизатор выполнен на 3-х транзисторах. На транзисторе Т8 выполнена схема сравнения, а на транзисторах Т9 и Т10 - усилитель постоянного тока.

Резистором R32 в некоторых пределах можно регулировать выходное напряжение стабилизатора. Выходное напряжение стабилизатора несколько увеличивается с повышением температуры за счет положительных ТКН кремниевых стабилитронов Д11 и Д12 и диодов Д7-Д10, включенных в цепь делителя схемы сравнения. Это компенсирует уменьшение длительности импульса одновибратора с увеличением температуры и позволяет увеличить рабочий диапазон температуры преобразователя от 0 до +500С без увеличения основной погрешности прибора.

Стабилизатор выдает стабилизированное напряжение при отклонениях питающего напряжения на 20%.

Конструктивно преобразователь выполнен следующим образом: элементы электрической схемы расположены на печатных платах, которые закреплены на металлическом шасси. На шасси так же крепится силовой трансформатор с конденсаторами С13…С16.

Металлическое шасси вставляется в литой корпус прибора и крепится к нему винтами М4. Корпус прибора закрывается крышкой, защищающей схему от попадания влаги и пыли.

На корпусе прибора имеется три разъема для ввода кабелей, соединяющих преобразователь с внешней электрической схемой.

Устройство и составные части датчика приведены на рис.   .

Датчик оборотов состоит из стального корпуса, постоянного магнита и катушки.

Соединение датчика с преобразователем осуществляется с помощью разъема.

Для защиты катушки от воздействий паров турбинного масла внутренние лопасти датчика заполняются защитным покрытием.  


 

А также другие работы, которые могут Вас заинтересовать

74332. Характерные значения удельных (погонных) параметров схем замещения и электрических режимов воздушных и кабельных линий электропередачи и соотношения между ними 496 KB
  Волновые параметры реальной линии волновое сопротивление ZB и коэффициент распространения волны γо определяются через ее удельные погонные отнесенные к 1 км параметры: где β0 коэффициент затухания α0 коэффициент изменения фазы фазовый угол. Удобно определять параметры Побразной схемы замещения линии через удельные погонные сопротивления Zo=RojX0 Ом км и проводимости Yo=g0jb0 См км. При этом равномерную распределенность параметров линии по длине учитывают приближенно с помощью поправочных коэффициентов по формулам Z...
74333. Двухобмоточные силовые тр-ры. Виды, условные обозначения, принципиальные сх., сх. замещения. Моделирование трансформаторов и определение параметров сх. замещения 224 KB
  замещения. замещения. Установим связь схемы замещения трансформатора с его реальными схемнорежимными параметрами. Эта схема в которой магнитная связь между обмотками заменена электрической называется схемой замещения трансформатора.
74334. Понятие пропускной способности электропередачи, факторы её определяющие 32 KB
  Второе ограничение связано с риском нарушения синхронной работы генератора при повышении нагрузки на которых возникает условие для выхода из синхронизма. Это ограничение чаще практикуется по статической устойчивости. При некоторой меньшей длине активным ограничение будет являться ограничение по нагреванию. Заметим что ограничение по нагреванию не зависит от длины ЛЭП.
74335. Компактные, компенсированные электропередачи переменного тока 66 KB
  Компактные компенсированные электропередачи переменного тока. В основу конструкций перспективных компактных воздушных линий электропередач разработанных в нашей стране положена простая идея. Образцы таких распорок уже созданы и составлены проекты будущих компактных воздушных линий электропередач рис. В скобках показаны для сравнения расстояния между фазами для обычных воздушных линий электропередач Расчеты показали что при меньших по сравнению с обычными воздушными линиями электропередач размерами компактные воздушные линии электропередач...
74336. Моделирование (представление) эл нагрузок при расчете рабочих режимов эл.передач и эл.сетей 114.5 KB
  Активные элементы схем замещения электрических сетей и систем нагрузки и генераторы представляются в виде линейных или нелинейных источников. Способы задания нагрузок при расчетах режимов: а постоянный по модулю и фазе ток; б постоянная по модулю мощность; вгпостоянные проводимость или сопротивление; дстатические характеристики нагрузки по напряжению; еслучайный ток Нагрузка задается постоянным по модулю и фазе током рис.Такая форма представления нагрузки принимается при всех расчетах распределительных сетей низкого напряжения...
74337. Статические характеристики электрических нагрузок 75 KB
  Зависимости показывающие изменение активной и реактивной мощности и от частоты f и подведенного напряжения U при медленных изменениях менее 1 сек этих параметров называют статическими характеристиками нагрузки СХН. Полученные при этом СХН называются естественными. Примерный состав нагрузки соответствующий типовым СХН Асинхронные двигатели...
74338. Представление генераторов при расчете установившихся режимов эл.передач ЭЭС. 105 KB
  В расчетах установившихся режимов электрических сетей и систем как правило не учитываются и а генератор представляется источником подключенным к шинам генераторного напряжения. Обычно для генерирующих узлов при фиксированных и не известны модуль и фаза напряжения узла и либо активные и реактивные составляющие напряжения и . Постоянные активная мощность и модуль напряжения В этом случае переменными являются как правило реактивная мощность и фаза напряжения. Задание постоянного модуля напряжения при соответствует реальным...
74339. Моделирование (представление) линии эл.передачи 0,38-220 кВ. характерные данные и основные соотношения между параметрами схем замещения ЛЭП 210.5 KB
  Характерные данные и основные соотношения между параметрами схем замещения ЛЭП. Выше приведена характеристика отдельных элементов схем замещения линий. При расчете симметричных установившихся режимов ЭС схему замещения составляют для одной фазы
74340. Особенности моделирования воздушных линий электропередачи со стальными проводами 116.5 KB
  Особенности моделирования воздушных линий электропередачи со стальными проводами. Поэтому стальные провода применяют при выполнении больших переходов через естественные препятствия широкие реки горные ущелья и т.