69186

Измеритель осевого сдвига ротора турбины

Лекция

Физика

Принцип действия датчика осевого сдвига ДОС ротора основан на индуктивном методе измерения линейных перемещений с применением дифференциально-трансформаторной схемы. Первичная обмотка датчика ОСР соединяется последовательно с обмоткой возбуждения компенсирующего датчика КД.

Русский

2014-10-01

32 KB

14 чел.

1.Измеритель осевого сдвига ротора турбины.

Краткая характеристика.

Устройство контроля осевого сдвига ротора турбины ОСР -3 предназначено для:

  1.  измерения и регистрации осевого положения ротора;
  2.  предупредительной и аварийной сигнализации, а также ;
  3.  защиты турбины при недопустимом осевом сдвиге, который может произойти при износе или выплавлении бабита колодок упорного подшипника и;
  4.  выдачи выходного сигнала 1-0-1В, 50Гц.

Технические характеристики.

Предел измерения осевых перемещений для турбины К 100 - 60/1500 1,2 - 0 - 1,8 мм.

Основная погрешность 2,5%.

Установки предупредительной и аварийной сигнализации - в пределах шкалы устройства.

Питание от сети 220+10%-15%В, 50Гц.

Потребляемая мощность не более 50ВА.

Допускаемый перерыв в питании не более 0,7 с, не чаще 2 раз в час.

Состав устройства ОСР -3 :

  •  датчик ОСР;
  •  прибор ПВФС-1;
  •  панель ОСР -3.

Корпус прибора предназначен для щитового монтажа. Панель предназначена для монтажа на вертикальной стенке.

Принцип действия и устройство измерителя осевого сдвига ротора турбины.

Принцип действия датчика осевого сдвига (ДОС) ротора основан на индуктивном методе измерения линейных перемещений с применением дифференциально-трансформаторной схемы.

Работа вторичного прибора ПВФС-1 основана на компенсационном принципе измерения с компенсацией небаланса в электрической цепи датчиков .

Принципиальная схема устройства изображена на рис. .

Первичная обмотка датчика ОСР соединяется последовательно с обмоткой возбуждения компенсирующего датчика (КД).

Встречно соединенные между собой вторичные обмотки ДОС соединяются последовательно с обмоткой на рамке КД и входом усилителя прибора ПВФС-1.

Вторичные обмотки ДОС одинаковые, поэтому при равных зазорах "а" и "с" рис.  выходное напряжение должно быть равно "0".

При изменении осевого сдвига ротора происходит смещение гребня в осевом направлении.

Зазоры "а" и "с" становятся неравными, что вызывает разбаланс схемы. На выходе ДОС появляется напряжение разбаланса, которое сравнивается с напряжением на рамке КД.

Разность этих напряжений подается на вход усилителя, на выходе которого подключается уравняющая обмотка реверсивного двигателя, с осью которого через передаточные шестерни связана рамка датчика КД и стрелка прибора. Двигатель вращается до тех пор пока напряжение на рамке КД , зависящая от угла поворота, не станет равным выходному напряжению ДОС. Величина перемещения гребня ротора отсчитывается по шкале прибора.

ДОС имеет Ш- образный магнитопровод, набранный из пластин электротехнической стали. Средний стержень датчика укорочен и в незамкнутой части магнитопровода помещается гребень ротора.

Первичная обмотка датчика расположена на среднем стержне, вторичные - на крайних стержнях.

Датчик помещен в кожух из силумина. Концы обмоток выведены через штепсельный разъем. Для защиты обмоток от воздействия обводненого турбинного масла внутренняя полость датчика заполняется компаудом эбоксидной смолы.

На турбине датчик устанавливается на устройстве (рис. ) для перемещения, которое позволит перемещать датчик вдоль оси ротора, при этом одному обороту маховика соответствует перемещение датчика на 1 мм.

Конструкция приспособления позволяет иммитировать осевой сдвиг ротора путем перемещения датчика относительно ротора, в крайних положениях датчика на приспособлении имеются регулируемые упоры.

Прибор ПВФС-1 содержит выходной ферродинамический преобразователь типа ПФ-2, который используется для получения выходного сигнала 1-0-1В переменного тока.

Шкала прибора проградуирована в мм.

Буквы на шкале обозначают:

Р - сторона регулятора;

Г - сторона генератора;

К - контроль прибора.

Предельные значения ОСР на шкале обозначаются с помощью передвижных указателей. Предварительная сигнализация осуществляется с помощью контактов сигнальной системы прибора ПВФС-1.

Срабатывание электромагнита защиты турбины осуществляется от бесконтактного поляризованного реле (БПР), расположенного на панели устройства ОСР-3, срабатывающего при достижении сигнала от ДОС определенного уровня.

Панель ОСР-3 представляет собой основание из гетинакса, на котором смонтированы БПР. Питание БПР, ДОС и КД осуществляется стабилизированным напряжением от стабилизатора через трансформатор, которые установлены на панели БПР.

Датчик ОСР устанавливается возле упорного подшипника со стороны регулятора (2-й подшипник турбины).

Прибор ПВФС-1 установлен на оперативной панели блочного щита панели 13П. Панель ОСР-3 установлена на панели 16ПМ неоперативного контура БЩУ.

Эксплуатация измерителя сдвига ротора турбины.

Во время эксплуатации необходимо ежесменно при отметке времени на д/ленте проверять исправность прибора ПВФС-1. Для этого тумблер "работа-контроль" переводится в положение "контроль". Если прибор исправен, стрелка устанавливается на контрольной отметке шкалы, обозначенной буквой "К".

Эксплуатация неисправного прибора запрещена!!!.

Во время переноски и транспортировки прибора ПВФС-1 арретир. Винт на верхней стороне корпуса прибора должен быть закручен.

Перед включением прибора необходимо проверить его заземление.

Для проверки работоспособности датчика необходимо измерить оммическое сопротивление и индуктивность первичной и вторичной обмоток датчика.

Сопротивление должно находится в пределах R1 = 8Ом ± 5%, R2 = R3 =90Ом ± 5%.

Индуктивность при разомкнутом магнитопроводе:

L1 = 82 мГн ± 15%, L2 = L3 = 210мГн ± 15%.

Сопротивление изоляции между обмотками и корпусом, обмотками и сердечником должно быть не менее 20МОм при температуре +200С и влажности не более 80%. 0,5 МОм при температуре +350С и влажности не более 95%.

Температура окружающей среды в месте установки датчика не должна превышать +800С. после установки датчика на турбине, после каждой ревизии и перед каждым пуском турбины, а также в сроки, установленные в ПТЭ или при возникновении неисправности необходимо проверить градуировку шкалы, срабатывание сигнальной системы в заданных точках, правильность фазировки прибора и отсутствие ложного срабатывания БПР. Проверку можно производить на работающей турбине.

Порядок проверки.

  1.  вывести защиту по осевому сдвигу из системы технологических защит;
  2.  при помощи лимба переместить ДОС в сторону регулятора, проверить правильность фазировки, градуировку шкалы и срабатывание предупредительной и аварийной сигнализации в заданных точках;
  3.  произвести аналогичную проверку, перемещая ДОС в сторону генератора;
  4.  проверить отсутствие ложного срабатывания БПР и предупредительной сигнализации от перемещения напряжения питания;
  5.  установить датчик по лимбу ( и по шкале) в первоначальное положение, застопорить лимб и отколибровать;
  6.  ввести защиту по осевому сдвигу турбины.   

 


 

А также другие работы, которые могут Вас заинтересовать

21694. ПАРАЛЛЕЛЬНАЯ СХЕМА УПРАВЛЕНИЯ 538.5 KB
  ПАРАЛЛЕЛЬНАЯ СХЕМА УПРАВЛЕНИЯ В параллельной архитектуре нейронного управления нейронная сеть используется наравне с обычным ПИДрегулятором. Настройка выполняется таким образом чтобы выходной сигнал объекта управления как можно точнее соответствовал заданному опорному сигналу . Из этих примеров следует что даже если удастся разработать хорошую общую стратегию управления может возникнуть необходимость в её настройке с целью получения лучших практических результатов.
21695. ПРИЛОЖЕНИЯ НЕЙРОННОГО УПРАВЛЕНИЯ 453.5 KB
  Далее мы будем изучать примеры практического применения некоторых методов нейроуправления и не только нейроуправления для реальных систем. ПРИЛОЖЕНИЯ НЕЙРОННОГО УПРАВЛЕНИЯ В качестве реальной системы будем рассматривать систему управления температурой водяной ванны инвертированный маятник систему управления генератором в электрическом транспортном средстве и печь как многомерный объект управления со многими входами и выходами. Система управления температурой водяной ванны Система управления представляет собой регулятор температуры для...
21696. МЕТОДЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 286 KB
  Вычисления соответствующие действиям нечёткого контроллера в системе управления температурой водяной ванны можно представить в виде следующего алгоритма: Шаг 1. Гн Омату рассматривает помимо нейросетевого и нечёткого управления ещё два способа управления водяной ванной. По результатам экспериментов из всех схем управления схема ПИД наиболее проста в реализации.
21697. Система стабилизации перевёрнутого маятника 668.5 KB
  Система стабилизации перевёрнутого маятника Перевёрнутый маятник представляет собой модель нестабильной системы управления сам маятник закреплён сверху на тележке которая может перемещаться вправо и влево в горизонтальной плоскости причём это перемещение является управляемым. Задача управления состоит в стабилизации маятника в вертикальном положении на возможно более продолжительное время. Цель управления состоит в том чтобы переместить тележку в позицию таким образом чтобы маятник оставался в вертикальном положении.
21698. Применение нейросетей для управления печью 145 KB
  В таких случаях целью управления является возможно более быстрое и плавное достижение требуемой температуры с последующим удерживанием её значения в заданных пределах. Система управления печью разработана японской фирмой Omron Inc. Структурная схема системы управления печью В состав системы управления входит модуль датчиков плата параллельного интерфейса вводавывода компьютер NEC PC9801F и исполнительное устройство.
21699. ОПРЕДЕЛЕНИЕ ИНТЕЛЛЕКТА 198.5 KB
  Более простое и пожалуй более понятное базовое определение интеллекта даёт доцент Днепропетровского национального университета Алексей Дубинский. Способность это мера интеллекта. Измеряется величиной интеллекта.
21700. ЦЕЛИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 152.5 KB
  При этом все объекты делятся на порядки и объект более высокого порядка может управлять только объектом более низкого порядка т. Из теории объектов следует что все программы объекты одного порядка а значит не существует программы которая могла бы генерировать другие программы. Точнее три порядка и три подпорядка третьего порядка. Итак объекты 1го порядка это материальные носители данных.
21701. ТЕОРИЯ ОБЪЕКТОВ 431 KB
  его модификации отражающие некоторые значимые конструктивные отличия объектов одного порядка порядок. Из приведённого выше определения следует что Вселенная это объект Мира более низкого порядка. 2 Объект более высокого порядка полностью включает в себя все свойства объекта низшего порядка в том числе и в потенциальной форме. Следует заметить что свойства объекта низшего порядка могут быть полностью равны свойствам объекта высшего порядка и они при этом не сольются поскольку в результате наличия у объекта более высшего порядка...
21702. ОБЪЕКТЫ ТРЕТЬЕГО ПОРЯДКА 491.5 KB
  2} Итак с помощью объектов 2го порядка мы можем изменять состояния различных объектов 1го порядка.1 В него мы введём дополнительный объект 1го порядка изменение состояния которого через универсальный интерфейс отражается на остальных объектах 1го порядка. Введём также генератор случайности дающий возможность случайно выбрать какой объект 1го порядка следует изменить наиболее сильно и в каком направлении.