69198

Призначення та схеми розміщення опор шасі

Лекция

Астрономия и авиация

Шасі це система опор літака необхідна для забезпечення стоянки руху по землі зльоту і посадки. Залежно від розташування опор відносно центру тяжіння ЦТ в якому прикладений вектор ваги літака G розрізняють три схеми шасі рис.33: а з хвостовою опорою...

Украинкский

2014-10-01

5 MB

2 чел.

(Л15)    3.12. Призначення та схеми розміщення опор шасі     [1], c. 119-123

Шасі – це система опор літака, необхідна для забезпечення стоянки, руху по землі, зльоту і посадки. Для стійкого положення літака на землі необхідно мінімум три опори. Залежно від розташування опор відносно центру тяжіння (ЦТ), в якому прикладений вектор ваги літака  G, розрізняють три схеми шасі (рис. 3.33):

а) з хвостовою опорою;

б) з передньою опорою;

в) велосипедне шасі.

Рис. 3.33. Схеми шасі:

а) - з хвостовою опорою;   б) - з передньою опорою;   в) - велосипедне;

(Колеса:   1 - основні;   2 - хвостове;   3 - носове;   4 - підкрильні).

У літаків з шасі з хвостовою опорою основні опори розташовані попереду центру тяжіння літака симетрично відносно його поздовжньої осі, а хвостова опора позаду центру тяжіння.

У літаків, оснащених шасі з передньою опорою, основні опори розташовані позаду центру тяжіння літака симетрично відносно його поздовжньої осі, а передня опора розташована в площині симетрії літака попереду центру тяжіння.

У літаків з шасі велосипедного типу центр тяжіння знаходиться приблизно на рівній відстані від коліс або колісних візків, які розташовуються в поздовжній площині літака одне позаду іншого. Бічні опори, розташовані на кінцях крила, ударне навантаження при посадці і зльоті не сприймають. Бічні опори підтримують крило при крені літака під час стоянки і рулювання по аеродрому. Шасі велосипедного типу застосовують на літаках з тонким профілем крила (шасі прибирається у фюзеляж, а невеликі бічні опори – в крило).

На сучасних літаках цивільної авіації широкого поширення набули шасі з передньою опорою, що пояснюється наступними перевагами:

1 - можливістю приземлення на більшої швидкості в порівнянні з літаком, що має шасі з хвостовою опорою, оскільки при цьому носова стійка оберігає літак від “капоту” (завалення на ніс), енергійніше гальмуються колеса, запобігає і “козління” літака (центр тяжіння розташовується попереду основних коліс) і при приземленні на основні колеса кут атаки і коефіцієнт Су крила зменшуються;

2 - хорошою шляховою стійкістю при пробігу на посадці та розгоні на зльоті;

3 - горизонтальним положенням осі фюзеляжу забезпечується хороший огляд екіпажу, створюються зручності для пасажирів, полегшується завантаження літака, реактивні двигуни розміщуються горизонтально і газовий струмінь не руйнує покриття аеродрому.

Але схема шасі з переднім колесом не позбавлена недоліків: складність пересування по м'якому і в'язкому ґрунту, оскільки „заривається” переднє колесо, велика небезпека при посадці з пошкодженою передньою опорою, велика маса конструкції, важкість забезпечення значного об'єму в передній частині фюзеляжу для прибирання колеса.


Шасі з хвостовою опорою

Ан – 2 (шасі не прибираються)

Gladiator (шасі не прибираються)

Іл – 2 (шасі не прибираються)


ЛаГГ – 3 (шасі прибираються)

А – 6м (шасі прибираються)


Шасі с передньою опорою

Су – 25

Як - 141

Ту – 22м


Ан - 225

F – 117

EF - 2000


МіГ – 27

Літаки з шасі велосипедного типу

Av – 8a


Av – 8в

Як - 28

Харіер


3.13. Основні частини і силові схеми шасі    [1], c. 123-128

Основними частинами шасі є:

1. Колеса (лижі), що служать для забезпечення стоянки, пересування літака по землі (снігу) і сприйняття частини ударів при зльоті і посадці літака.

2. Амортизатори, призначені для поглинання кінетичної енергії удару при посадці і русі літака по нерівностях аеродрому.

3. Бічні, задні або передні підкоси, що сприймають лобові і бічні навантаження, які діють на опору шасі, а також скручуючи моменти, що виникають при розворотах літака на землі.

4. Замки, що замикають опори в прибраному або випущеному положеннях.

5. Підйомники, що забезпечують прибирання і випуск опор.

Для контролю положення опор шасі в польоті, їх рухів при прибиранні і випуску служить система світлової сигналізації (червона лампа – прибрано, зелена – випущено) і звукової сигналізації сирена, яка починає автоматично діяти при перекладанні ручки сектора газу в положення “Малий газ” у прибраному положенні шасі. На деяких літаках є механічні і приладові покажчики положення шасі.

За силовими схемами шасі можна розділити на фермові, балочні і фермово-балочні.

Конструкція фермового шасі (рис. 3.34) є просторовою фермою, до якої кріпиться вісь колеса. Ферма складається зі стержнів 2, в число яких входить і амортизаційна стійка 1. Стержні ферми сприймають зусилля від стискування і розтягування. Прикладом фермового шасі є шасі літака Ан – 2.

Рис. 3.34. Фермове шасі:

1 - амортизаційна стійка;    2 - бічні підкоси.


Балочне шасі має консольну балку, верхній кінець якої закріплений на конструкції планера, а до нижнього кінця кріпиться колесо. За способом кріплення колеса до штоку амортизатора шасі балочного типу поділяються на вильчаті  1, напіввильчаті  2, консольні  3 і зі спареними колесами  4 (рис. 3.35).

Рис. 3.35. Балочне шасі:

1 – вильчате; 2 – напіввильчате; 3 – з консольною віссю; 4 – зі спареними колесами.

Широкого поширення отримали шасі зі спареним кріпленням коліс на візку. На важких літаках застосовуються візки з кількістю коліс від чотирьох до шестнадцати.

Шасі вильчатого типу (рис. 3.36) кріпиться до штоку амортизатора за допомогою вилки.

Рис. 3.36. Вильчате шасі:

1 – колесо;  2 – вилка;  3 – дволанцюжник (траверси);  4 – циліндр амортизатора;
5 – бічний підкіс;  6 – верхня траверса;  7 – підкіс, що ламається;
8 – циліндр підйому і випуску шасі.


У сучасній авіації найчастіше застосовується фермово-балочне шасі (рис. 3.37), яке складається з однієї або двох консольних балок, підкріплених підкосами. Установка підкосів розвантажує стійку від вигинаючих моментів.

Рис. 3.37. Фермово-балочне шасі:

1 – підкоси силової ферми;   2 – гідроциліндр прибирання-випуску шасі;

3 – стійка силової ферми;   4 – замок прибраного положення;   5 – підкіс, що складається;  6 – розпір-замок випущеного положення;  7 – амортизаційна стійка.


МіГ – 21 (переднє шасі - вильчатє; задні шасі - з консольною віссю)

МіГ – 23 (переднє шасі - зі спареними колесами; задні шасі - з консольною віссю)


Ту – 22м (фермово - балочне шасі зі спареними колесами)

F – 16 (переднє шасі - полувильчате; задні - фермово - балочні)


Колеса шасі служать для пересування літака по землі, а також сприймання частини енергії ударів при зльоті і посадці літака. Тому вони повинні володіти достатньою прохідністю, мало зношуватися і частково гасити удари, що виникають під час руху літака. Пружним елементом колеса є гумовий пневматик, що складається з гумової камери і покришки, яка надівається на металевий корпус. Колесо шасі (рис. 3.38) складається з обода  2  (барабана) з ребордами  1, на який надівається пневматик.

Рис. 3.38. Конструкція колеса шасі:

1реборда;   2 – обід (барабан);   3 – гальмо;   4 – гальмівна оболонка.

Для зручності монтажу пневматика одна з реборд (зовнішня) робиться зйомною. Обід зазвичай відливається з алюмінієвого сплаву разом з маточиною, в яку вмонтовуються зовнішні обойми радіально-упорних конічних роликових підшипників. Всередину обода вмонтовується сталева гальмівна оболонка  4, в яку вміщується гальмо 3, що непорушно встановлюється на осі колеса.

Шасі можуть бути такими, що прибираються і не прибираються. На всіх сучасних швидкісних літаках застосовуються шасі, що прибираються. Їх можна прибирати в крило, гондоли двигуна і фюзеляж.


Су – 27 (після зльоту шасі прибирається)

Су – 17 (після зльоту шасі прибирається)

МіГ – АТ (шасі прибирається)


F – 16 (шасі прибирається)

Су – 30 (шасі прибирається)


3.14. Засоби гальмування коліс шасі    [1], c. 128-130

Гальма служать для поглинання частини кінетичної енергії літака при приземленні. Кінетична енергія літака у момент приземлення

,

де:   тпос – маса літака при посадці;   Vпос - посадкова швидкість літака.

Протягом 15 – 30 секунд посадкового пробігу потрібно розсіяти величезну енергію руху. Частина енергії витрачається на аеродинамічний опір (зокрема гальмівний парашут), частина - на опір коліс перекочуванню, а велика частина (до 70 %) розсівається у вигляді тепла гальмами коліс.

Застосування гальмівних коліс дозволяє скоротити довжину пробігу літака і різко зменшити розміри аеродромів. Колеса з гальмами покращують маневреність літака на землі і дозволяють проводити випробування двигунів без підкладення колодок під колеса. Підвищення ефективності гальм досягається установкою автоматів, застережуючих ковзання (юз) коліс шасі, що зменшує довжину пробігу літака і зберігає покришки, знижуючи їх знос. Гарантований гальмівний момент повинен забезпечувати при посадці уповільнення літака з прискоренням 0,2 g, утримувати літак на стоянці при ухилі 1:10, гальмування на стоянці протягом  24 – 48 годин, швидкодія 1-1,5 с (швидкодія – час від початку гальмування до досягнення максимального гальмівного моменту).

Гальмівні пристрої коліс бувають колодочні, дискові і камерні з гідравлічними, електричними, повітряними і механічними приводами.

Основні елементи конструкції колодочних гальмівколодка, що є деталлю таврового перетину, відлитою з легкого сплаву, і гальмівний барабан, жорстко скріплений з ободом колеса. До колодки кріплять гальмівну стрічку з пластмаси з високим коефіцієнтом тертя і підвищеною теплостійкістю. Колодок може бути одна, дві, три і більше. Колодки монтуються на корпусі гальма, яке непорушно кріпиться на осі колеса. При гальмуванні колодки притискаються своєю поверхнею до гальмівного барабана і створюють гальмівний момент.

Дискові гальма на важких літаках застосовують частіше за інші, оскільки в порівнянні з колодочними і камерними вони володіють при рівних розмірах колеса великим гальмівним ефектом, надійніші, не вимагають складної і трудомісткої роботи по регулюванню зазорів, забезпечують плавне гальмування. Краща ізольованість гальма від обода зменшує можливість руйнування камери пневматика від дії високих температур при перегріві гальма.

Колеса з дисковими гальмівними пристроями гальмуються тертям між нерухомими і рухомими дисками. Нерухомі диски закріплені на корпусі гальма. Рухомі диски зчеплені з колесом, що обертається, і можуть переміщатися у напрямі осі маточини колеса.

Дискове гальмо (рис. 3.39) складається з корпусу гальма  2, кільцевого поршня  8, гальмівних (нерухомих  5 і рухомих  4) дисків і притискного диска  7. При подачі тиску рідини в кільцеву порожнину гальма кільцевий поршень починає переміщатися. При цьому спочатку усувається первинний зазор між гальмівними дисками, а потім притискний диск стискає весь пакет нерухомих і рухомих дисків.

Рис. 3.39. Дискове гальмо:

1 – канал підведення рідини;   2 – корпус гальма;   3 – корпус колеса;   4 – рухомий диск;   5 – нерухомий диск;   6 – кільцева регулювальна шайба;   7притискний диск;   8 – кільцевий поршень;   9 – гумове кільце.


При обертанні колеса завдяки притисненню дисків один до одного виникають сили тертя і, отже, гальмівний момент. При скиданні тиску в кільцевій порожнині притискний диск і поршень повертаються у вихідне положення (колесо розгальмовується) під дією пружин вузла розгальмування.

Гальмівний момент в камерних гальмах створюється в результаті тертя між гальмівними колодками і гальмівним барабаном колеса. Колодки при гальмуванні переміщуються в радіальному напрямі під дією тиску повітря або рідини, що поступають в гумову камеру, і по всьому колу притискаються до гальмівного барабана колеса. Коли тиск в камері знижується, пружини, вставлені в колодки, відсовують колодки від барабана. Камерні гальмівні пристрої мають малу масу, працюють плавно без заклинювання, відрізняються простотою виготовлення і експлуатації, мають рівномірний знос гальмівних колодок, але мало надійні внаслідок швидкого руйнування камери і порівняно малопотужні.

Здійснити граничне ефективне гальмування можна в тому випадку, якщо в процесі гальмівного пробігу дотримується умова – гальмівний момент  Мг  змінюється відповідно до закону зміни граничної сили зчеплення шини з ґрунтом  Fзч. Сила  Fзч  залежить від вертикального навантаження на колесо  R  і коефіцієнта тертя шини з ґрунтом  fтр:             fтр·· Fзч = fтр · R.

Вертикальне навантаження на колесо  R – величина змінна, що змінюється від нульового значення у момент торкання колеса об посадкову смугу до максимального значення при стоянці літака. Змінне значення має також коефіцієнт тертя  fтр, що залежить від матеріалу посадкової смуги, - грунт, бетон, лід, сніг та ін. Льотчик не в змозі оцінити значення  Fзч  під час пробігу літака, тому гальмування коліс неефективне. В цьому випадку відбувається або перегальмування, коли колесо заклинюється гальмом і, не обертаючись, ковзає по посадковій смузі (юз колеса), або неповне гальмування.

Для підвищення ефективності гальмування літаки обладнані автоматами гальмування – пристроями, які дозволяють автоматично підтримувати момент гальмування коліс рівним моменту зчеплення шин об посадкову смугу. В результаті значно скорочується довжина пробігу і зменшується знос покришок колеса. Застосування гальмівних парашутів також підвищує ефективність гальмування.


EF – 2000

МіГ – 29


В - 52

Су - 25


 

А также другие работы, которые могут Вас заинтересовать

58772. Имя существительное, личные местоимения, числительные, формы глаголов to be, to have, порядок слов в утвердительном предложении 140.5 KB
  The lectures delivered by the professors of our Institute are interesting. 2. I write my exercises with a pen. 3. Our assistant’s experiments were successful. 4. He pays great attention to his studies. 5. This book was written by a famous writer. 6. The article was about doctors.