69300

Базові поняття процесів і потоків

Лекция

Информатика, кибернетика и программирование

Однозначна відповідність між програмою і процесом встановлюється тільки в конкретний момент часу: один процес у різний час може виконувати код декількох програм код однієї програми можуть виконувати декілька процесів одночасно.

Украинкский

2014-10-02

39.5 KB

10 чел.

Лекція № 4

Тема: Базові поняття процесів і потоків

План

  1.  Процеси і потоки в сучасних ОС
  2.  Моделі процесів і потоків
  3.  Складові елементи процесів і потоків

Процеси і потоки в сучасних ОС

У сучасній операційній системі одночасно виконуються код ядра (що належить до його різних підсистем) і код програм користувача. При цьому відбуваються різні дії: одні програми і підсистеми виконують інструкції процесора, інші зайняті введенням-виведенням, ще деякі очікують на запити від користувача або інших застосувань. Для спрощення керування цими діями в системі доцільно виділити набір елементарних активних елементів і визначити інтерфейс взаємодії ОС із цими елементами. Коли активний елемент системи зв'язати із програмою, що виконується, ми прийдемо до поняття процесу.

Дамо попереднє означення процесу.

Під процесом розуміють абстракцію ОС, яка об'єднує все необхідне для виконання однієї програми в певний момент часу.

Програма - це деяка послідовність машинних команд, що зберігається на диску, в разі необхідності завантажується у пам'ять і виконується. Можна сказати, що під час виконання програму представляє процес.

Однозначна відповідність між програмою і процесом встановлюється тільки в конкретний момент часу: один процес у різний час може виконувати код декількох програм, код однієї програми можуть виконувати декілька процесів одночасно.

Для успішного виконання програми потрібні певні ресурси. До них належать:

♦ ресурси, необхідні для послідовного виконання програмного коду (передусім
процесорний час);

♦ ресурси, що дають можливість зберігати інформацію, яка забезпечує виконання програмного коду (регістри процесора, оперативна пам'ять тощо).

Ці групи ресурсів визначають дві складові частини процесу:

♦ послідовність виконуваних команд процесора;

♦ набір адрес пам'яті (адресний простір), у якому розташовані ці команди і дані для них.

Виділення цих частин виправдане ще й тим, що в рамках одного адресного простору може бути кілька паралельно виконуваних послідовностей команд, що спільно використовують одні й ті ж самі дані. Необхідність розмежування послідовності команд і адресного простору підводить до поняття потоку.

Потоком (потік керування, нитка, thread) називають набір послідовно виконуваних команд процесора, які використовують загальний адресний простір процесу. Оскільки в системі може одночасно бути багато потоків, завданням ОС є організація перемикання процесора між ними і планування їхнього виконання. У багатопроцесорних системах код окремих потоків може виконуватися на окремих процесорах.

Тепер можна дати ще одне означення процесу.

Процесом називають сукупність одного або декількох потоків і захищеного адресного простору, у якому ці потоки виконуються.

Захищеність адресного простору процесу є його найважливішою характеристикою. Код і дані процесу не можуть бути прямо прочитані або перезаписані іншим процесом; у такий спосіб захищаються від багатьох програмних помилок і спроб несанкціонованого доступу. Природно, що неприпустимим є тільки прямий доступ (наприклад, запис у пам'ять за допомогою простої інструкції перенесення даних); обмін даними між процесами принципово можливий, але для цього мають бути використані спеціальні засоби, які називають засобами міжпроцесової взаємодії (див. розділ 6). Такі засоби складніші за прямий доступ і працюють повільніше, але при цьому забезпечують захист від випадкових помилок у разі доступу до даних.

На відміну від процесів потоки розпоряджаються загальною пам'яттю. Дані потоку не захищені від доступу до них інших потоків за умови, що всі вони виконуються в адресному просторі одного процесу. Це надає додаткові можливості для розробки застосувань, але ускладнює програмування.

Захищений адресний простір процесу задає абстракцію виконання коду на окремій машині, а потік забезпечує абстракцію послідовного виконання команд на одному виділеному процесорі.

Адресний простір процесу не завжди відповідає адресам оперативної пам'яті. Наприклад, у нього можуть відображатися файли або регістри контролерів введення-виведення, тому запис за певною адресою в цьому просторі призведе до запису у файл або до виконання операції введення-виведення. Таку технологію називають відображенням у пам'ять (memory mapping).

Моделі процесів і потоків

Максимально можлива кількість процесів (захищених адресних просторів) і потоків, які в них виконуються, може варіюватися в різних системах.

В однозадачних системах є тільки один адресний простір, у якому в кожен момент часу може виконуватися один потік.

У деяких вбудованих системах теж є один адресний простір (один процес), але в ньому дозволене виконання багатьох потоків. У цьому разі можна організовувати паралельні обчислення, але захист даних застосувань не реалізовано.

У системах, подібних до традиційних версій UNIX, допускається наявність багатьох процесів, але в рамках адресного простору процесу виконується тільки один потік. Це традиційна однопотокова модель процесів. Поняття потоку в даній моделі не застосовують, а використовують терміни «перемикання між процесами», «планування виконання процесів», «послідовність команд процесу» тощо (тут під процесом розуміють його єдиний потік).

У більшості сучасних ОС (таких, як лінія Windows XP, сучасні версії UNIX) може бути багато процесів, а в адресному просторі кожного процесу - багато потоків. Ці системи підтримують багатопотоковість або реалізують модель потоків. Процес у такій системі називають багатопотоковим процесом.

Надалі для позначення послідовності виконуваних команд вживатимемо термін «потік», за винятком ситуацій, коли обговорюватиметься реалізація моделі процесів.

Складові елементи процесів і потоків

До елементів процесу належать:

♦ захищений адресний простір;

♦ дані, спільні для всього процесу (ці дані можуть спільно використовувати всі його потоки);

інформація про використання ресурсів (відкриті файли, мережні з'єднання тощо);

інформація про потоки процесу. Потік містить такі  елементи:

+ стан процесора (набір поточних даних із його регістрів), зокрема лічильник поточної інструкції процесора;

+ стек потоку (ділянка пам'яті, де перебувають локальні змінні потоку й адреси повернення функцій, що викликані у його коді).

Питання для самоконтролю:

  1.  Визначення процесу, програми, потоку.
  2.  Ресурси для успішного виконання програми.
  3.  Адресний простір процесів та потоків.
  4.  Складові частини процесу.
  5.  Моделі процесів і потоків
  6.  Складові елементи процесів і потоків


 

А также другие работы, которые могут Вас заинтересовать

10606. Решение МКЭ тепловой задачи для цилиндра. Алгоритм расчета 635.5 KB
  Решение МКЭ тепловой задачи для цилиндра. Алгоритм расчета Математическая модель линейной задачи теплопроводности с внутренним тепловыделением в цилиндрических координатах имеет вид: 1 с граничными условиями:
10607. Электродуговой нагрев. Общие положения. Постановка тепловой задачи. Методы решения. Устойчивость дуги 292.5 KB
  Электродуговой нагрев. Общие положения. Постановка тепловой задачи. Методы решения. Устойчивость дуги Электрическая дуга представляет собой один из видов электрических разрядов в газах при котором наблюдается прохождение электрического тока через газовый промежут...
10608. Электроэрозионная обработка материалов. Теория электротепловых процессов 79.5 KB
  Электроэрозионная обработка материалов. Теория электротепловых процессов Производительность и точность электроискровой обработки чистота обработанной поверхности определяются многими факторами. Важнейшими из них являются параметры электрической схемы обуслов
10609. Особенности цифрового управления процессами 196.25 KB
  Исторический обзор. Понятие системы. Особенности цифрового управления процессами Первый пример практического применения управляющей ЭВМ относится к 1959 году он связан с работой нефтехимического завода компании Texaco в городе Порт Артур штат Техас. Компания Texaco выпо...
10610. Управление на основе последовательного программирования. Управление на основе прерываний. Управление последовательностью событий и бинарное управление 480.38 KB
  Управление на основе последовательного программирования. Управление на основе прерываний. Управление последовательностью событий и бинарное управление Попытаемся проанализировать следующую проблему: могут ли задачи управления в реальном времени решаться с помощь...
10611. Генерация опорного значения. Системы, содержащие несколько контуров управления 107.1 KB
  Генерация опорного значения. Системы содержащие несколько контуров управления. Взаимосвязанные системы. Критичные по времени процессы. Сбор данных измерений и обработка сигналов. Топология информационных потоков. Интерфейс оператора. Системная интеграция и надежность...
10612. Модели, применяемые в управлении. Типы моделей. Масштаб времени динамических моделей 234.16 KB
  Модели применяемые в управлении. Типы моделей. Масштаб времени динамических моделей. Непрерывные модели динамических систем. Уравнения состояния. Нелинейные системы. Численное моделирование динамических систем. Проблема слишком большого шага. Дискретные модели динам
10613. Компоненты интерфейса между процессом и управляющим компьютером. Датчики. Исполнительные устройства. Бинарные и цифровые датчики 195.59 KB
  Компоненты интерфейса между процессом и управляющим компьютером. Датчики. Исполнительные устройства. Бинарные и цифровые датчики. Обработка сигналов. Дискретизация сигналов. Преобразование аналоговых и цифровых сигналов. Обработка измерительной информации. Аналог...
10614. Аналоговые (непрерывные) и дискретные регуляторы. Дискретная модель ПИД-регулятора 225.4 KB
  Аналоговые непрерывные и дискретные регуляторы. Дискретная модель ПИДрегулятора. Позиционный алгоритм. Определение частоты выборки в системах управления. Предотвращение интегрального насыщения. Регуляторы можно строить на основе как аналоговой так и цифровой те...