69307

Базові механізми міжпроцесової взаємодії

Лекция

Информатика, кибернетика и программирование

Технології передавання повідомлень У цьому розділі розглянемо особливості організації взаємодії між потоками різних процесів. Основи передавання повідомлень Усі методи взаємодії які було розглянуто дотепер ґрунтуються на читанні й записуванні...

Украинкский

2014-10-03

67 KB

1 чел.

Лекція № 11

Тема: Базові механізми міжпроцесової взаємодії

План

1. Міжпроцесова взаємодія на базі спільної пам'яті

2. Основи передавання повідомлень

3. Технології передавання повідомлень

У цьому розділі розглянемо особливості організації взаємодії між потоками різних процесів. Основною характеристикою такої взаємодії є те, що у процесів немає спільного адресного простору, тому тут не можна безпосередньо працювати зі спільно використовуваними даними, як це було можливо для потоків. Тут ітиметься переважно про процеси, під якими розуміють потоки різних процесів.

Міжпроцесова взаємодія на базі спільної пам'яті

Для вирішення проблеми міжпроцесової синхронізації необхідно:

по-перше, організувати спільну пам'ять між процесами (це може бути розпо-ділювана пам'ять або файл, відображений у пам'ять);

по-друге, розмістити в цій пам'яті стандартні синхронізаційні об'єкти (семафори, м'ютекси, умовні змінні);

по-третє, використовуючи ці об'єкти, працювати зі спільно використовуваними даними, як це робилося у разі використання потоків.

Такий підхід широко застосовують на практиці. На жаль, досить складно запропонувати спосіб його реалізації для міжпроцесової синхронізації у більшості систем, оскільки різні системи пропонують різний набір засобів організації спільної пам'яті та засобів сигналізації, які можуть працювати в такій пам'яті. Універсальним рішенням у даному разі є застосування семафорів.

Основи передавання повідомлень

Усі методи взаємодії, які було розглянуто дотепер, ґрунтуються на читанні й записуванні спільно використовуваних даних. На практиці така взаємодія не завжди можлива (наприклад, робота зі спільно використовуваними даними проблематична, якщо для процесів немає спільної фізичної пам'яті, а є тільки мережний зв'язок між комп'ютерами, на яких вони виконуються). У таких випадках можна використати засоби взаємодії, які не ґрунтуються на спільно використовуваних даних, передусім засоби передавання повідомлень [27, 37, 57].

Як було вже згадано, засоби передавання повідомлень ґрунтуються на обміні повідомленнями — фрагментами даних змінної довжини. Основою такого обміну є не спільна пам'ять, а канал зв'язку (communication channel). Він забезпечує взаємодію між процесами (для того, щоб спілкуватися, вони повинні створити канал зв'язку) і є абстрактним відображенням мережі зв'язку. Абстрактність каналу дає змогу реалізувати його не тільки на основі мережної взаємодії, але й спільної пам'яті (коли процеси перебувають на одному комп'ютері). При цьому такі зміни в реалізації будуть сховані від процесів, що взаємодіють.

Виокремлюють такі характеристики каналів зв'язку: спосіб задання; кількість процесів, які можуть бути з'єднані одним каналом; кількість каналів, які можуть бути створені між двома процесами; пропускна здатність каналу (кількість повідомлень, які можуть одночасно перебувати в системі й бути асоційованими з цим каналом); максимальний розмір повідомлення; спрямованість зв'язку через канал (двобічний або однобічний зв'язок).

В однобічному зв'язку для конкретного процесу допускають передавання даних тільки в один бік.

Примітиви передавання повідомлень

Основна особливість передавання повідомлень полягає в тому, що процеси спільно використовують тільки канали. Немає необхідності забезпечувати взаємне виключення процесів під час доступу до спільно використовуваних даних, замість цього досить визначити примітиви передавання повідомлень — спеціальні операції обміну даними через канал, які забезпечують не лише обмін даними, але й синхронізацію.

Є два примітиви передавання повідомлень: send (для відсилання повідомлення каналом) і receive (для отримання повідомлення з каналу).

Розглянемо, як особливості реалізації send і гесеі ve дають змогу виділити різні класи методів передавання повідомлень.

Зазначені примітиви передавання повідомлень можуть задавати прямий і непрямий обмін даними. При прямому обміні даними необхідно явно вказувати процес, з яким необхідно обмінюватись інформацією. Непрямий обмін здійснюють через спеціальний об'єкт (поштову скриньку, порт); процеси можуть поміщати повідомлення в поштову скриньку і отримувати їх звідти. Зазвичай кілька процесів мають доступ до однієї поштової скриньки, застосовуючи під час її пошуку методи іменування. Більшість сучасних технологій обміну повідомленнями використовує непрямий обмін даними. Прикладом прямого обміну є традиційні сигнали.

Синхронне й асинхронне передавання повідомлень

Зупинимося на основних питаннях синхронізації під час передавання повідомлень. Можна виокремити різні групи методів передавання повідомлень залежно від того, як вони дають можливість відповісти на два запитання.

  1.  Чи може потік бути призупинений під час виконання операції send, якщо повідомлення не було отримане?
  2.  Чи може потік бути призупинений під час виконання операції receive, якщо повідомлення не було відіслане?

У реальних системах відповідь на друге запитання практично завжди буде позитивною — неблокувальне приймання повідомлень спричиняється до того, що вони губляться. Варіанти відповідей на перше запитання визначають два класи передавання повідомлень — синхронне і асинхронне.

Під час синхронного передавання повідомлень операція send призупиняє процес до отримання повідомлення, а під час асинхронного передавання повідомлень вона не призупиняє процес (тобто є неблокувальною); після відсилання повідомлення процес продовжує своє виконання, не чекаючи отримання результату. Найзручніше в цьому випадку використати непряму адресацію через поштові скриньки.

Реалізація синхронного й асинхронного передавання повідомлень залежить від низки характеристик каналу й обміну повідомленнями, насамперед від пропускної здатності каналу.

♦ Якщо пропускна здатність дорівнює нулю (повідомлення не можуть очікувати в системі), відправник завжди має очікувати, поки одержувачу не надійде повідомлення, а одержувач має очікувати, поки повідомлення йому не буде відіслано. Два процеси мають явно домовлятися про майбутній обмін.

♦ Якщо пропускна здатність обмежена (у системі можуть перебувати максимум п повідомлень для цього каналу), відправник має очікувати тільки тоді, коли черга повідомлень для цього каналу переповнена (у ній перебуває рівно п повідомлень), одержувач має очікувати, якщо ця черга порожня.

♦ Якщо пропускна здатність необмежена, очікування можливе тільки для одержувача за порожньої черги.

Під час обміну повідомленнями необхідне підтвердження їх отримання. Деякі методи обміну повідомленнями не вимагають підтвердження зовсім, в інших випадках можлива ситуація, коли відправника після виконання операції send блокують доти, поки одержувач не надішле йому інше повідомлення із підтвердженням отримання; таку технологію називають обміном повідомленнями із підтвердженням отримання.

Розв'язання задачі виробників-споживачів

за допомогою передавання повідомлень

Розглянемо розв'язання задачі виробників-споживачів із використанням асинхронного передавання повідомлень. Організовують дві поштові скриньки — для виробника і для споживача. Якщо скринька порожня, потік очікуватиме, поки в ній не з'явиться повідомлення.

Поштові скриньки виробника та споживача мають свої особливості.

Скринька виробника може містити тільки порожні повідомлення загальною кількістю не більше п. Наявність т повідомлень у цій скриньці служить сигналом для виробника, що в буфері є місце для т об'єктів. Щоб відіслати дані в буфер, виробник забирає зі скриньки одне повідомлення, заповнює його даними і відсилає в скриньку споживача. Заповнивши буфер, виробник спустошить свою скриньку і буде змушений чекати, поки споживач не помістить у неї порожнє повідомлення.

Повідомлення у скриньці споживача відповідають об'єктам у буфері. Після того як споживач забере повідомлення з цієї скриньки, він використає його дані й відішле порожнє повідомлення у скриньку виробника, сигналізуючи, що в буфері з'явилося місце. Порожня скринька споживача означає порожній буфер — споживач чекатиме, поки виробник не помістить заповнене повідомлення в цю скриньку.

На початку роботи скриньку виробника заповнюють порожніми повідомленнями загальним числом п (це буде означати, що він може зробити п об'єктів).

Функції producer^) і consumer() схожі. І виробник, і споживач у циклі намагаються забрати повідомлення зі своїх скриньок. Якщо це вдається виробникові, він заповнює повідомлення даними і відсилає його у скриньку споживача, якщо це сможе зробити споживач, він скористається повідомленням і відішле порожнє повідомлення у скриньку виробника. Після цього цикл триває.

Ось алгоритм розв'язання задачі:

message_t nulljusg;  // порожнє повідомлення

mai1box_t producerjnailbox. consumer jnailbox:  // поштові скриньки

int n = 100;       // розмір буфера

void producer() {

messagejt producer_msg: for (; ;) {

// забрати повідомлення зі скриньки виробника, // чекати, якщо вона порожня receive(producer_mailbox, producerjnsg); producerjnsg. data = produceO:

// відіслати заповнене повідомлення у скриньку споживача send(consumer_mailbox, producerjnsg); } } void consumer О {

message_t consumerjnsg; for (; ;) {

// забрати повідомлення зі скриньки споживача, чекати якщо вона порожня receivetconsumer jnailbox, consumerjnsg); consume(consumer jnsg.data);

// відіслати у скриньку виробника порожне повідомлення // повідомивши йому про те, що у буфері є місце send(producer_mailbox, nulljnsg); } } void mainO {

// заповнити скриньку виробника порожніми повідомленнями for(int 1-0; i<n: 1++)

send(producerjnailbox, nulljnsg); // запустити producerO і customer О паралельно

}

Основна відмінність цього розв'язання від запропонованих у розділі 5 полягає в тому, що воно не залежить від спільно використовуваних даних. Доступ до поштових скриньок може бути виконаний за допомогою системних викликів, що приховують їхнє місцезнаходження; скриньки можуть бути й віддаленими. Це дає змогу застосовувати алгоритм тоді, коли виробник і споживач є різними процесами, а можливо, й перебувають на різних комп'ютерах.

Технології передавання повідомлень

Розглянемо методи передавання повідомлень, які застосовують на практиці.

Канали

Канал — це найпростіший засіб передавання повідомлень. Він є циклічним буфером, записування у який виконують за допомогою одного процесу, а читання - за допомогою іншого. У конкретний момент часу до каналу має доступ тільки один процес. Операційна система забезпечує синхронізацію згідно правилу: якщо процес намагається записувати в канал, у якому немає місця, або намагається зчитати більше даних, ніж поміщено в канал, він переходить у стан очікування.

Розрізняють безіменні та поіменовані канали.

До безіменних каналів немає доступу за допомогою засобів іменування, тому процес не може відкрити вже наявний безіменний канал без його дескриптора. Це означає, що такий процес має отримати дескриптор каналу від процесу, що його створив, а це можливо тільки для зв'язаних процесів.

До поіменованих каналів (named pipes) є доступ за іменем. Такому каналу може відповідати, наприклад, файл у файловій системі, при цьому будь-який процес, який має доступ до цього файла, може обмінюватися даними через відповідний канал. Поіменовані канали реалізують непрямий обмін даними.

Обмін даними через канал може бути однобічним і двобічним.

Приклади використання поіменованих каналів будуть наведені в розділі 11, безіменних — у розділі 17.

Черги повідомлень

Іншою технологією асинхронного непрямого обміну даними є застосування черг повідомлень (message queues) [37, 52]. Для таких черг виділяють спеціальне місце в системній ділянці пам'яті ОС, доступне для застосувань користувача. Процеси можуть створювати нові черги, відсилати повідомлення в конкретну чергу й отримувати їх звідти. Із чергою одночасно може працювати кілька процесів. Повідомлення - це структури даних змінної довжини. Для того щоб процеси могли розрізняти адресовані їм повідомлення, кожному з них присвоюють тип. Відіслане повідомлення залишається в черзі доти, поки не буде зчитане. Синхронізація під час роботи з чергами схожа на синхронізацію для каналів.

Сокети

Найрозповсюдженішим методом обміну повідомленнями є використання сокетів (sockets). Ця технологія насамперед призначена для організації мережного обміну даними, але може бути використана й для взаємодії між процесами на одному комп'ютері (власне, мережну взаємодію можна розуміти як узагальнення IPC).

Сокет — це абстрактна кінцева точка з'єднання, через яку процес може відсилати або отримувати повідомлення. Обмін даними між двома процесами здійснюють через пару сокетів, по одному на кожен процес. Абстрактність сокету полягає в тому, що він приховує особливості реалізації передавання повідомлень — після того як сокет створений, робота з ним не залежить від технології передавання даних, тому один і той самий код можна без великих змін використовувати для роботи із різними протоколами зв'язку.

Особливості протоколу передавання даних і формування адреси сокету визначає комунікаційний домен; його потрібно зазначати під час створення кожного сокету. Прикладами доменів можуть бути домен Інтернету (який задає протокол зв'язку на базі TCP/IP) і локальний домен або домен UNIX, що реалізує зв'язок із використанням імені файла (подібно до поіменованого каналу). Сокет можна використовувати у поєднанні тільки з одним комунікаційним доменом. Адреса сокету залежить від домену (наприклад, для сокетів домену UNIX такою адресою буде ім'я файла).

Способи передавання даних через сокет визначаються його типом. У конкретному домені можуть підтримуватися або не підтримуватися різні типи сокетів.

Наприклад, і для домену Інтернет, і для домену UNIX підтримуються сокети таких типів:

потокові (stream sockets) — задають надійний двобічний обмін даними суцільним потоком без виділення меж (операція читання даних повертає стільки даних, скільки запитано або скільки було на цей момент передано);

дейтаграмні (datagram sockets) — задають ненадійний двобічний обмін повідомленнями із виділенням меж (операція читання даних повертає розмір того повідомлення, яке було відіслано).

Під час обміну даними із використанням сокетів зазвичай застосовується технологія клієнт-сервер, коли один процес (сервер) очікує з'єднання, а інший (клієнт) з'єднують із ним.

Перед тим як почати працювати з сокетами, будь-який процес (і клієнт, і сервер) має створити сокет за допомогою системного виклику socket (). Параметрами цього виклику задають комунікаційний домен і тип сокету. Цей виклик повертає дескриптор сокету — унікальне значення, за яким можна буде звертатися до цього сокету.

Подальші дії відрізняються для сервера і клієнта. Спочатку розглянемо послідовність кроків, яку потрібно виконати для сервера.

  1.  Сокет пов'язують з адресою за допомогою системного виклику bind(). Для сокетів домену UNIX як адресу задають ім'я файла, для сокетів домену Інтерне-ту - необхідні характеристики мережного з'єднання. Далі клієнт для встановлення з'єднання й обміну повідомленнями має буде вказати цю адресу.
  2.  Сервер дає змогу клієнтам встановлювати з'єднання, виконавши системний виклик listen() для дескриптора сокету, створеного раніше.
  3.  Після виходу із системного виклику 1 і sten() сервер готовий приймати від клієнтів запити на з'єднання. Ці запити вишиковуються в чергу. Для отримання запиту із цієї черги і створення з'єднання використовують системний виклик acceptO.-Внаслідок його виконання в застосування повертають новий сокет для обміну даними із клієнтом. Старий сокет можна використовувати далі для приймання нових запитів на з'єднання. Якщо під час виклику accept () запити на з'єднання в черзі відсутні, сервер переходить у стан очікування.

Для клієнта послідовність дій після створення сокету зовсім інша. Замість трьох кроків досить виконати один — встановити з'єднання із використанням системного виклику connect(). Параметрами цього виклику задають дескриптор створеного раніше сокету, а також адресу, подібну до вказаної на сервері для виклику bind ().

Після встановлення з'єднання (і на клієнті, і на сервері) з'явиться можливість передавати і приймати дані з використанням цього з'єднання. Для передавання даних застосовують системний виклик sendO, а для приймання — recvO.

Зазначену послідовність кроків використовують для встановлення надійного з'єднання. Якщо все, що нам потрібно, - це відіслати і прийняти конкретне повідомлення фіксованої довжини, то з'єднання можна й не створювати зовсім. Для цього як відправник, так і одержувач повідомлення мають попередньо зв'язати сокети з адресами через виклик bindO. Потім можна скористатися викликами прямого передавання даних: sendtoO - для відправника і recvfromO - для одержувача. Параметрами цих викликів задають адреси одержувача і відправника, а також адреси буферів для даних.

Докладніше використання сокетів буде описано в розділі 16.

Віддалений виклик процедур

Технологія віддаленого виклику процедур (Remote Procedure Call, RPC) [37, 50, 52, 57] є прикладом синхронного обміну повідомленнями із підтвердженням отримання. Розглянемо послідовність кроків, необхідних для обміну даними в цьому разі.

  1.  Операцію send оформляють як виклик процедури із параметрами.
  2.  Після виклику такої процедури відправник переходить у стан очікування, а дані (ім'я процедури і параметри) доставляються одержувачеві. Одержувач може перебувати на тому самому комп'ютері, чи на віддаленій машині; технологія RPC приховує це. Класичний віддалений виклик процедур передбачає, що процес-одержувач створено внаслідок запиту.
  3.  Одержувач виконує операцію гесеі ve і на підставі даних, що надійшли, виконує відповідні дії (викликає локальну процедуру за іменем, передає їй параметри і обчислює результат).
  4.  Обчислений результат повертають відправникові як окреме повідомлення.
  5.  Після отримання цього повідомлення відправник продовжує своє виконання, розглядаючи обчислений результат як наслідок виклику процедури.

Приклади використання віддаленого виклику процедур будуть нами розглянуті в розділі 20.

Питання для самоконтролю:

  1.  Вирішення проблеми міжпроцесової синхронізації
  2.  Канал зв’язку
  3.  Характеристики каналів зв’язку
  4.  Примітиви передавання повідомлень
  5.  Прямий і непрямий обмін даними
  6.  Синхронне і асинхронне передавання повідомлень
  7.  Технології передавання повідомлень
  8.  Канали. Черги повідомлень.
  9.  Сокети. Типи сокетів.
  10.  Віддалений виклик процедур