69321

Властивості власних значень і власних векторів матриці

Лекция

Математика и математический анализ

Метод характеристичного рівняння матриці Коли на деякий вектор х діє матриця А то в загальному випадку отримується новий вектор у = Ах який відрізняється від вектора х як своїм модулем розміром так і орієнтацією в багатовимірному просторі.

Украинкский

2014-10-03

115 KB

1 чел.

Лекція 6. Властивості власних значень і власних векторів матриці

4.1. Метод характеристичного рівняння матриці

Коли на деякий вектор х діє матриця А, то в загальному випадку отримується новий вектор у = Ах, який відрізняється від вектора х як своїм модулем (розміром), так і орієнтацією в багатовимірному просторі. Але можуть бути випадки, коли компоненти вектора у будуть пропорційні компонентам вектора х з коефіцієнтом пропорційності λ, тобто вектор зберігає свою орієнтацію в просторі. Такі вектори х називають власними векторами матриці А, а коефіцієнти λ — власними значеннями (або числами) матриці А.

Власні значення матриць знаходяться з рівняння

або  (4.1)

звідки при x0 отримаємо умову тотожності (4.1) у вигляді: 

 (4.2)

Якщо цей визначник розкрити відносно власних значень, то отримаємо так зване характеристичне рівняння матриці А у вигляді полінома n–степеня відносно власних значень.

4.1.1. Метод Фадєєва-Левер’є

Для знаходження коефіцієнтів характеристичного рівняння крім прямого розкриття самого визначника існує декілька методів, серед яких виділяється метод Фадєєва–Левер’є, з допомогою якого:

1. Визначаються коефіцієнти характеристичного полінома:

det(pE - A) = pn +  (4.3)

2. Обчислюється обернена матриця

A - 1 = К0 0 (4.4)

3. Обчислюється резольвента матриці

A - 1 = К0 / (4.4)

(pE - A) - 1 = . (4.5)

Метод Фадєєва–Левер’є базується на обчисленні слідів матриці А і добутків матриць AKn - i де Kn - i — коефіцієнти чисельника резольвенти матриці (4.5).

Коефіцієнти чисельника і знаменника виразу (4.5) визначаються ітераційно (спочатку коефіцієнт чисельника Kn - i, а потом коефіцієнт знаменника λn - i) відповідно до наступної процедури, де E — одинична матриця, Sp(A) = — слід матриці:

Kn - 1 = E;

Kn - 2 = AKn - 1 + λn - 1E;

Kn - k = AKn - k + 1 + λn - k + 1E;

K0 = AK1 + λ1E;

O = AK0 + λ0  умова перевірки.

Приклад 4.1.

Побудувати характеристичне рівняння матриці

A = , n = 3

Відповідно до методу Фадєєва–Левер’є (4.5):

(pI - A) - 1 = ;

Коефіцієнти чисельника і знаменника визначаються так:

K2 = I, λ2 = - SpA = 7,

K1 = A + 7Е = ; AK1 = ;
= -
Sp(AK1) = 16.
K0 = AK1 + 16Е = ; AK0 = ;
= - Sp(AK0) = 12.

Для контролю перевіряємо умову АК0 + λ0I = 0;

Характеристичне рівняння має вигляд:

з якого можна знайти власні значення матриці λ = [ - 3, - 2, - 1]t.

Обернена матриця

A - 1 =

і резольвента матриці

4.1.2. Метод Крилова

Крім методу Фадєєва–Левер’є досить відомим є також і метод Крилова, який базується на відомій теоремі Келлі–Гамільтона про те, що довільна матриця А задовольняє своє характеристичне рівняння:

. (4.6)

Якщо вираз (4.6) помножити на довільний вектор х, то можна отримати:

 (4.7)

де введено вектори

...,  (4.8)

компоненти яких обчислюються за формулами:

. (4.9)

На основі матрично–векторного рівняння (4.7) формуємо наступну систему лінійних рівнянь для коефіцієнтів характеристичного рівняння матриці:

. (4.10)

Якщо виявиться, що система (4.10) вироджена, то необхідно замінити початковий вектор х, який для зручності звичайно обирають як x = [1,0,0,…,0]t.

Приклад 4.2.

Користуючись методом Крилова, побудувати характеристичне рівняння матриці:

A = .

Обчислимо спочатку

А2 =  та А3 = .

Вибираючи x = [1,1,0]t знаходимо необхідні вектори: x(1) = Ax = [ - 1, - 3,2]t, x(2) = Ax(1) = [5,9, - 10]t, x(3) = Ax(2) = [ - 31, - 27,38]t.

Система рівнянь (4.10) для нашого прикладу набуде вигляду:

,

звідки отримуємо вектор коефіцієнтів λ = [7,16,12]t, який співпадає з результатом, отриманим в Прикладі 4.1.

Примітка: Задача визначення коефіцієнтів характеристичного рівняння матриці належить до погано обумовлених задач, оскільки потребує дуже високої точності обчислення цих коефіцієнтів. Це положення було проілюстровано в прикладі 1.2 глави 1 на базі штучного полінома, побудованого Уілкінсоном Д.

Тому розглянуті методи Фадєєва–Левер’є і Крилова підходять лише для досить невеликих порядків матриці А, тому що із зростанням її порядку n коефіцієнти характеристичного полінома звичайно збільшуються дуже швидко, ускладнюючи знаходження коренів цього полінома.

У зв’язку з цим в практичних розрахунках методи обчислення власних значень матриць, які використовують характеристичний поліном, майже витіснені ітераційними методами, один з яких (найбільш ефективний) описано нижче.

PAGE  79


 

А также другие работы, которые могут Вас заинтересовать

77298. ПСИХОЛОГИЯ КАК ИНСТРУМЕНТ РАЗРАБОТКИ МАССОВЫХ И ПРОФЕССИОНАЛЬНЫХ ИНТЕРФЕЙСОВ 39 KB
  Теория деятельности связана прежде всего с именами Леонтьева и Рубинштейна. При анализе деятельности предшествующем проектированию интерфейса необходимы выявление целей деятельности способов достижения той или иной цели установление уровня понимания этой цели работником определение его мотивов. Согласно теории деятельности устанавливается иерархия: деятельность осознанные действия операции. Деятельностный подход к проектированию человеко-компьютерного взаимодействия предполагает анализ поставленной задачи и описание деятельности...
77299. К поиску психологических оснований изучения человеко-компьютерного взаимодействия 25 KB
  Рассмотрим в качестве примера проблемы возникающие в связи с использованием средств виртуальной реальности для создания специализированных систем научной визуализации. Зачастую понятие виртуальной реальности в СМИ и даже частично в научной литературе используется в смысле любого порождения современных компьютерных программ – игр интернета и пр. Наиболее изученным является применение виртуальной реальности в обучающих целях когда среда виртуальной реальности используется в качестве тренажера на котором отрабатываются необходимые в...
77300. Некоторые методы многомерной визуализации 835.5 KB
  Однако если результат есть многомерное множество то в настоящее время нет ответа на вопрос как в общем случае получать визуальное представление множества для понимания его структуры. Как правило в каждой конкретной задаче исследователя интересует вполне конкретная информация о структуре численно полученного им множества M. С другой стороны исследователь часто знает априорные данные о строении множества. Поэтому есть надежда что можно разработать конкретный метод представления многомерного множества с помощью которого исследователь был бы...
77301. О Создании Методов Многомерной Визуализации 622 KB
  Перевалов Институт Математики и Механики УрО РАН Екатеринбург АННОТАЦИЯ Работа посвящена теории и практике многомерной визуализации. Разработана классификация методов визуальных представлений изложены принципы создания сложных систем многомерной визуализации. Большое внимание уделено проблемам и рекомендациям по взаимодействию разработчика системы визуализации и конечным пользователем системы.
77303. RESEARCH OF VIRTUAL REALITY USERS 17.5 KB
  The min fctor distinguishing virtul relity from trditionl threedimensionl computer grphics is the stte of presence. First of ll there re questions bout the impct of presence on mentl ctivity. Will presence distrct the user from the ctul tsk We lso need to know if the presence could be chieved t ll when working with bstrct dt. Will the user be ble to interct with the environment.
77304. ACTIVITY THEORY IN PRACTICE OF DESIGN AND DEVELOPMENT OF HUMAN-COMPUTER INTERFACES 431 KB
  The paper is devoted to the design and development of “mass” and “professional” interfaces. The approach based on Activity Theory is considered. The example of the system with the interface based on Activity Theory approach is described.
77305. Анализ подходов к отладке параллельных вычислений 19 KB
  Фактически единственным способом является поочередное подсвечивание строчек создающее иллюзию выполнения программы перед глазами пользователя. Выполнение программы отождествляется с ее исходным текстом вообще говоря статическим. Попытки же напрямую исследовать динамику выявляют огромную сложность рассмотрения реальной программы и в основном ограничиваются небольшими фрагментами кода. Кроме того выполнение программы как последовательность операторов довольно плохо поддается визуализации.