69332

Багатовимірні системи та метод змінних стану

Лекция

Информатика, кибернетика и программирование

Загальні відомості про багатовимірні системи Метод змінних стану Методика розв’язання рівнянь стану В САК в загальному випадку можна одночасно виконувати керування декількома величинами. Розенброком було закладено основи методу автоматизованого проектування...

Украинкский

2014-10-03

528 KB

10 чел.

Тема 7. Багатовимірні системи та метод змінних стану

  1.  Загальні відомості про багатовимірні системи
  2.  Метод змінних стану
  3.  Методика розв’язання рівнянь стану

В САК в загальному випадку можна одночасно виконувати керування декількома величинами. Такі системи називають багатовимірними, або системами багатозв’язного керування. Відповідно об’єкт керування називають багатовимірним об’єктом.

Лінійними багатовимірними системами називають системи автоматичного керування, в яких всі елементи мають лінійні характеристики і їх динамічні властивості описуються лінійними диференційними рівняннями. Якщо коефіцієнти таких рівнянь незмінні, то таку систему називають стаціонарною (в протилежному випадку – нестаціонарною).

Рівняння багатовимірної системи в загальному випадку можна записати у вигляді системи рівнянь у операторній формі

де x1xn – регульовані змінні, u1um – сигнали керування; f1fk – збурення; Pij(p), Qij(p), Cij(p) – поліноми від р із сталими коефіцієнтами.

Для багатовимірних систем найпоширенішою є матрична форма запису рівнянь, згідно з якою введемо такі матриці

,  ,  ,

,   ,

.

При цьому вихідну систему рівнянь багатовимірної системи можна записати у вигляді

.     (1)

Приклад 1

Двовимірна система описується рівняннями вигляду

;

.

Записати рівняння системи в матричній формі.

Поведінку багатовимірних систем можна описувати також за допомогою передаточних функцій.

Передаточною функцією по деякому і-му параметру та k-му виходу називають відношення зображення за Лапласом Xk(p) вихідного параметра xk до зображення Ui(p) вхідної величини ui при нульових початкових умовах. Згідно з цим

.      (2)

Обчислити цю передаточну функцію можна, якщо знехтувати у вихідній системі рівнянь зображеннями всіх сигналів та параметрів керування, крім Ui(p).

Аналогічно можна знайти передаточну функцію за збуренням fi відповідно до цього виходу xk

.      (3)

Зображення вектору керованих параметрів х можна записати

,    (4)

де

– матриця передаточних функцій за керуванням, або передаточна матриця;

– передаточна матриця за збуренням.

Відповідно до (1)

,   

Приклад 2

Знайти передаточні матриці за керуванням u та збуренням f для системи, заданої двома диференційними рівняннями в операторній формі

,

.

Відповідь:

.

2. У 1974 р. Г. Розенброком було закладено основи методу автоматизованого проектування САК, який потім дістав методу змінних стану.

Приклад 3

Рисунок 1 – Механічна система з лінійним переміщенням

На тіло масою М діє три сили – зовнішня сила , сила тертя, пропорційна швидкості – , та сила пружності, пропорційна переміщенню – . Під дією цих сил тіло масою М рухається згідно закону Ньютона, згідно з яким сума сил, що діють на тіло, дорівнює добутку маси тіла на його прискорення.

З урахуванням сил, діючих на тіло, диференційне рівняння, що описує рух системи, має вигляд

,   (5)

а передаточна функція

.    (6)

Цей вираз визначає залежність положення  від діючої сили . Припустимо, що нам також потрібна інформація про швидкість системи. Тоді можна ввести наступні змінні

,

.    (7)

є положення маси, а  – її швидкість. На основі (5) та (6) можна записати

. (8)

Отже, динаміку системи можна описати за допомогою системи диференційних рівнянь першого порядку

,

,

.

Представимо систему у векторно-матричній формі

,

.

Стан системи в будь-який момент часу – це кількість інформації, яка разом з усіма вхідними змінними одночасно визначає поведінку системи при всіх .

Отже, при використанні методу змінних стану математичну модель об’єкту представляють у вигляді двох рівнянь – рівняння стану та рівняння виходу:

,

,      (9)

де  – вектор стану розмірності (), компоненти якого , …,  називають змінними стану об’єкту;

А – матриця стану розмірністю (), яка визначає вільні та вимушені рухи системи;

U(t) – вектор керування розмірністю ();

В – матриця керування (матриця входу) розмірністю (), яка визначає взаємозалежність входу системи і змінних стану;

Y(t) – вектор вихідних змінних об’єкту розмірністю ();

С – матриця виходу розмірністю (), яка визначає характер взаємозв’язку вихідних величин зі змінними стану;

Dматриця обходу розмірністю (), яка характеризує пряму залежність виходу від входу (для багатьох систем D =0).

При описі електричних і механічних об’єктів, які можуть накопичувати енергію, в якості змінних стану часто приймають струми через індуктивності, напруги на ємностях, переміщення та швидкості руху мас. Як відомо, саме ці величини визначають накопичену енергію (магнітну, електричну, потенціальну, кінематичну) і характеризують інерційні властивості об’єкту. Для одновимірного об’єкту n-го порядку змінними стану можуть бути вихідний сигнал та його похідні до (n-1) включно.

Однак в загальному випадку змінні стану можуть і не мати конкретного фізичного змісту – вони будуть формальними, абстрактними змінними, що лише задовольняють рівнянням стану.

В деяких часткових випадках змінні стану пов’язані між собою співвідношенням

,  (i = 1, 2,…, n-1),

тоді вони називаються фазовими змінними.

n-мірний простір, координатами якого є змінні стану , називають простором стану.

Структурна схема багатовимірної системи, що відповідає наведеним рівнянням стану, має вигляд

Приклад 4

Розглянемо систему, що описується диференційними рівняннями:

,

.

де  та  – вхідні змінні, а  та  – вихідні змінні. За змінні стану можна прийняти виходи системи і, якщо потрібно, їх похідні

;  ;  .

Тоді вихідну систему рівнянь можна представити у вигляді:

,

.

Остаточно рівняння приймають вигляд:

,

,

.

До них додаються рівняння для вихідних змінних:

,

.

Ці рівняння можні записати в векторно-матричній формі:

;   .

За допомогою змінних стану можна представити у вигляді моделі об’єкт, що має один вхід та один вихід, та описується диференційним рівнянням

.

Відповідно передаточна функція системи має вигляд

.

Розділивши чисельник та знаменник  на , отримаємо

.

Вихідна величина системи  може бути записана у вигляді

,

де

.

Звідси випливає, що

.

З наведених виразів ясно, що схема змінних стану повинна містити n послідовно включених інтегруючих ланок, вихідні величини яких відповідно з коефіцієнтами –а1, –а2, …, –аn підсумовуються з вхідним сигналом  і зменшуються в а0, утворюючи сигнал помилки .

Далі сигнал , підсилений в b0 разів, підсумовується з вихідними сигналами інтеграторів, взятими з коефіцієнтами b1, b2, …, bт, утворюючи вихідну величину . Отримана таким чином схема має вигляд, зображений на рис. 2.

3. Методика розв’язання рівнянь стану. Матрична форма запису рівнянь стану має вигляд:

.

Виконавши перетворення за Лапласом всіх рівнянь, що входять в систему, отримаємо кінцевий результат у матричній формі

,           (10)

де

.

Для рішення матричного рівняння згрупуємо всі члени, що містять , у лівій частині

Рисунок 2 – Схема моделювання системи

.           (11)

Далі необхідно виділити множник . Для цього введемо одиничну матрицю

.          (12)

Цей додатковий крок потрібен тому, що операція віднімання матриці А зі скалярної змінної не визначена. З рівняння (12) отримаємо

.           (13)

Тоді вектор стану  можна обчислити, виконавши зворотне перетворення Лапласа від .

На основі (9), вектор вихідних змінних дорівнює

.

Відповідно

.              (14)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3


 

А также другие работы, которые могут Вас заинтересовать

39450. Создание качественных каналов и связи на направлении МИНСК-ГОМЕЛЬ (через БОБРУЙСК) 393 KB
  Расчетная частота кГц 17186 Номинальное затухание участка регенерации дБ 65 Номинальное значение тока ДП мА 200 Допустимое отклонение тока ДП мА 10 Допустимые значения напряжения ДП В 401300В650В относительно земли Максимальное расстояние ОРПОРП 200 км Максимальное число НРП между ОРП 66 Максимальное число НРП в полу секции ДП 33 Комплекс аппаратуры третичной ЦСП ИКМ – 480 предназначен для организации на внутризоновых и магистральной сетях связи пучков каналов по кабелю МКТ – 4 с парами 12 46 мм. ВВГ – оборудование вторичного...
39451. ОПИСАНИЕ ПРИНЦИПА СТРУКТУРНОЙ ЭЛЕКТРИЧЕСКОЙ СХЕМЫ УСТРОЙСТВА СДВИГА ДВОИЧНЫХ ЧИСЕЛ 369.29 KB
  Операция сдвига широко используется в современной вычислительной технике для реализации умножения деления нормализации двоичных чисел с плавающей точкой и т. Поэтому даже в самых ранних ЭВМ использовались так называемые сдвигающие регистры. Такие регистры применяются и в новейших машинах но наряду с ними стали использоваться и комбинационные многоразрядные программируемые сдвигатели Целью данного курсового проекта является формирование начальных умений и навыков самостоятельного проектирования цифровых устройств углубление и...
39452. Создание ЦЛП на направлении Витебск – Бегомль – Лепель 348 KB
  В состав аппаратуры ИКМ120 входят: оборудование вторичного временного группооброзования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП таких как пульт для испытания линейных трактов и регенераторов ПИЛТ пульт настройки и проверки регенераторов ПНПР пульт измерения затухания кабельной линии ИЗКЛ. Таблица 1 – Основные параметры системы передачи Параметр Значение параметра Число организуемых каналов 120 Скорость передачи информации...
39454. Правоотношения: понятие, виды, структура 133.5 KB
  Правовые отношения, проблема их понятия и содержания является одной из фундаментальных проблем теории права и юридической науки в целом. Её значение в регулировании всех отраслей права неоспоримо
39455. Создание качественных каналов связи на направлении Витебск – Браслав – Глубокое 217 KB
  В состав аппаратуры ИКМ120 входят аналогоцифровое оборудование формирования стандартных первичных цифровых потоков АЦО оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП. Оконечное оборудование линейного тракта обеспечивает согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии линейного тракта служебную связь между оконечными и промежуточными...
39456. Цифровое представление и цифровая обработка информации с применением средств вычислительной техники 352 KB
  кабель прокладываемый вдоль данной автомобильной дороги и необслуживаемыерегенерационные пункты НРП.2 Расчет длин регенерационных участков Размещение необслуживаемых регенерационных пунктов НРП вдоль кабельной ЛП осуществляется в соответствии с номинальной длиной регенерационного участка РУ для проектируемой СП. блоки линейных регенераторов в НРП не содержат искусственных линий ИЛ. Подставляя числовые значения в формулы 3 и 4 и округляя результат до целого числа определяем количество регенерационных участков: на секции ОП1ПВ:...