69497

Расчет и конструирование элементов железобетонного каркаса многоэтажного производственного здания

Курсовая

Архитектура, проектирование и строительство

Проектирование монолитного железобетонного перекрытия с балочными плитами. Материал конструкции - бетон тяжёлый естественного твердения класса B 25 Расчётные характеристики бетона: МПа. МПа. МПа. Расчётные характеристики арматуры: Арматура класса АIII имеет периодический профиль...

Русский

2014-10-05

857 KB

7 чел.

    Министерство образования РФ

   Волгоградский Государственный Архитектурно - Строительный Университет

    Кафедра «Строительные конструкции основания и надежность сооружений»

     ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту по дисциплине  «Железобетонные и каменные конструкции»

Расчет и конструирование элементов  железобетонного каркаса

многоэтажного производственного здания

                                   

 

Выполнил:

Студент   6 курса  группы ГСХ-07                                                                       Кудряшова Т.Н.

Проверил:

доц. кафедры СКОиНС                                                                                          Гриценко Б. С.

Волгоград 2013

   Содержание:

  1.  Задание на проектирование
  2.  Проектирование монолитного железобетонного перекрытия с балочными плитами

2.1.Компоновка конструктивной схемы перекрытия

2.2. Расчёт и конструирование плиты

2.3. Расчёт и конструирование второстепенной балки

2.4. Расчёт и конструирование главной балки

2.5 Расчёт и конструирование средней колонны

   3. Список используемой литературы

  

 

  1.  Задание на проектирование

    Исходные данные    

  1.   Район строительства: г. Мурманск.  
  2.   Размеры - длина: 38м
  3.  Размеры - ширина: 14,2м
  4.   Высота этажа: 3.8 м.
  5.  Число этажей: 3

4.  Временная нагрузка на   междуэтажные   перекрытие:   8 кН/м2 .      

5.  Временная нагрузка на   чердачное  перекрытие:  2,5 кН/ м2

             6.  Вес пола междуэтажного перекрытия, кН/м : 0,7 кН/ м2

             7 . Вес чердачного перекрытия и кровли (без плиты), 1,8 кН/ м2 .

              8.  Классы  бетона: СНиП 2.03.01-84*   В25

              9.  Класс арматуры: (ГОСТ 5781-82) А400 (А-III) (35ГС)

2.Проектирование монолитного железобетонного перекрытия с балочными плитами.

Материал конструкции - бетон тяжёлый естественного твердения класса B 25

Расчётные характеристики бетона:

МПа.  МПа.  МПа.

Расчётные характеристики арматуры:

     Арматура класса АIII имеет периодический профиль, т.е. круглый профиль с 2-мя продольными ребрами и поперечными выступами.

  •  Для плиты проволока класса Вр-I  ø3, ø4, ø5 мм.

 МПа.  МПа.  МПа.

МПа.  МПа.  МПа.

  •  Для балок, колонны:

Рабочая класса     А-III   МПа.  МПа.  МПа.

Монтажная класса A-I    МПа.  МПа.  МПа.

2.1 Компоновка конструктивной схемы перекрытия.

Пролёты главных балок  м.

Пролёт второстепенных балок  м.

Пролёты плиты м.

Размеры поперечных сечений:

  •  Толщина плиты  мм.
  •  Высота второстепенных балок  мм.
  •  Высота главных балок                мм.
  •  Ширина второстепенной балки   мм.
  •  Ширина главной балки                 мм.

Опирание на стены:

  •  Плита в рабочем направлении с=120 мм.
  •  Плита в нерабочем направлении с=60 мм.
  •  Второстепенной балки с=250 мм.
  •  Главной балки с=380 мм.

2.2. Расчёт и конструирование плиты. 

Расчётные пролёты:

м.

м.

Вид нагрузки

Нормативная нагрузка, кН/ м

γf

Расчётная нагрузка кН/м

Постоянная нагрузка:

Вес пола

0,70

1,3

0,91

Вес плиты

1,75

1,1

1,925

Итого

2,45

2,835

Временная нагрузка:

Технологическая

8

1,2

9,6

Всего

10,45

12,435

С учётом коэффициента надёжности по назначению здания  γn= 0,95 ,нагрузка на один погонный метр плиты при её расчётной ширине м. равна:

 кН/м

Определение расчётных усилий:

  кН*м

 кН*м

Конструктивный расчёт

≈50 мм.- рабочая высота.

Унифицированный коэффициент  

м2

Относительная высота сжатой зоны

Характеристика сжатой зоны бетона

,где - для тяжёлого бетона.

Граничная относительная высота сжатой зоны бетона.

 

 0,175<1,285

Определение площади сечения арматуры:

Крайние пролёты:

м2

Средние пролёты:

м2

Относительная высота сжатой зоны

   0,124<1,285

м2

Принимаем непрерывное армирование плиты.

Основная сетка:

  •  Рабочая арматура 10¢4 Вр-I   см2 шаг 100 мм.
  •  Распределительная арматура  ¢3 Вр-I  шаг 250 мм.   

Дополнительная сетка:

см2     

  •  Рабочая арматура 5¢3 Вр-I   см2 шаг 200 мм.
  •  Распределительная арматура  ¢3 Вр-I  шаг 250 мм.  

2.3. Расчёт и конструирование второстепенной балки.

м.

м.

     Статический расчёт.

Ширина грузовой площадки  м.

Вид нагрузки

Расчётная формула

Нормативная

нагрузка кН/м

γf

Расчётная нагрузка кН/м

Постоянная нагрузка:

1.Вес плиты

3

1,1

3,3

2.Вес пола

1,68

1,3

2,184

3.Собсвенный вес ребра балки

1,36

1,1

1,496

Итого:

6,04

6,98

Временная нагрузка

Полезная нагрузка

19,2

1,2

23,04

Всего:

25,24

30,02

Расчётная нагрузка с учётом :

кН/м

кН/м

 

Про- лёт

Сече-ния

Коэффициенты

Множитель

Изгибающие моменты

Крайний

0

0

0,200

0,065

52,57

0,400

0,09

72,79

0,425

0,091

73,59

0,600

0,075

60,65

0,800

0,02

16,17

1,000

-

-0,0715

-57,82

Средний

0,200

0,018

-0,033

14,42

-26,44

0,400

0,058

-0,012

46,47

-9,61

0,500

0,0625

-0,0105

50,07

 -8,41

0,600

0,058

-0,009

46,47

 -7,21

0,800

0,018

-0,027

14,42

-21,63

1,000

-

-0,0625

-50,07

Средний

0,200

0,018

-0,025

14,42

-20,03

0,400

0,058

-0,006

46,47

-4,81

0,500

0,0625

-0,006

50,07

-4,81

0,600

0,058

-0,006

46,47

-4,81

0,800

0,018

-0,025

14,42

-20,03

1,000

-

-0,0625

-

47,46

Поверка прочности:

кН

  кН

кН

Уточним рабочую высоту второстепенной балки.

м.

 ,где

м. – толщина защитного слоя.

Окончательная высота балки м.

м.

Для участков балки, где действуют положительные изгибающие моменты, принимаем тавровое сечение с полкой в сжатой зоне. Тогда ширина сжатой зоны:

м ;  м

Принимаем:

м.  м.

Подбор сечения продольной арматуры:

I пролёт.

Определение положения нейтральной оси

>73,59кН*м.

Следовательно нейтральная ось проходит в полке и сечение рассчитывается как прямоугольное с  м. и  м.

Найдём коэффициент  

Определим граничную высоту сжатой зоны.

, где

м2

Принимаем 2¢12+2¢16 A-III   см2 .

II пролёт.

кН*м – нейтральная ось проходит в полке

Найдём коэффициент

м2

Принимаем 2¢12+2¢12 A-III   см2 .

Опорное сечение (опора В)

Действует отрицательный момент, полка находится в растянутой зоне; сечение рассчитывается как прямоугольное,  см.

Найдём коэффициент

м2

Принимаем 2¢8+4¢12 A-III   см2 .

Опорное сечение (опора С)

Действует отрицательный момент, полка находится в растянутой зоне; сечение рассчитывается как прямоугольное,  см.

Найдём коэффициент

м2

Принимаем 2¢8+4¢10A-III   см2 .

Расчёт прочности наклонных сечений.

Максимальная поперечная сила Q=91,12 Кн,

Вычислим проекцию расчётного наклонного сечения на продольную ось с.

Поперечная сила, воспринимаемая бетоном:

 

- коэффициент, учитывающий влияние вида бетона; для тяжёлого бетона ;

- коэффициент, учитывающий влияние сжатых полок в тавровых сечениях

;

- коэффициент, учитывающий влияние продольных сил, ;

В расчётном наклонном сечении  , следовательно ;

м;

Принимаем с=0,72 м, тогда

Поперечная сила, воспринимаемая поперечной арматурой;

кН.

кН/м

Шаг поперечных стержней

По конструктивным условиям:

на приопорных участках (при h≤450)

150≥Sh/2; 150≥S≤200, принимаем S=150мм

В середине пролета

500≥S≤3h/4; S=3*400/4=300<500, следовательно, принимаем S=300мм.

Проверим условие

кН.       105,66˃91,12 кН.

Из условия сварки с продольными стержнями принимаем поперечные стержни dsw=5мм класса Вр-I, Rsw=260 МПа. Число каркасов принимаем равное двум, тогда площадь сечения поперечных стержней As=2*0.196=0.392см2

Проверяем прочность полосы между наклонными трещинами:

 кН  - условие выполнено,

где

Определение места обрыва продольных стержней.

Количество и диаметр стержней

см2 .

,м.

,м.

, кН/м.

Примечание

1

0,345

0,360

2¢12+2¢16 A-III  

2¢16 A-III 

6,28

4,02

2,4

0,0121

0,0078

77,69

52,25

1

пролёт

2

0,345

0,360

12+2¢12 A-III

2¢12 A-III

4,52

2,26

2,4

0,0087

0,0044

56,20

29,51

2

пролёт

3

0,370

0,370

8+4¢12 A-III 

8+2¢12 A-III 

5,53

3,27

0,16

0,13

0,077

61,56

39,57

Опора В

4

0,370

0,370

8+4¢10 A-III 

8+2¢10 A-III  

4,15

2,58

0,16

0,097

0,061

48,69

31,97

Опора С

5

0,360

8

1,01

2,4

0,0019

13,24

Конструктив-ная арматура

м. для опорных сечений.

м. для пролётных сечений.

        

  1.    Расчёт и конструирование колонны.

Вычислим грузовую площадь   м2    

Сбор нагрузок произведём в табличной форме.

Вид нагрузки

Нормативная нагрузка, кН

γf

Расчётная нагрузка кН

Постоянная нагрузка:

1.Собственный вес перекрытий

   357,76

1,1

 393,54

2.Вес чердачного перекрытия и кровли.

70,29

1,2

84,35

3.Собственный вес колонны.

34,91

1,1

38,40

4. Вес пола междуэтажных перекрытий:

 

82,01

1,1

90,21

Итого:

606,5

Временная нагрузка:

5. Полезная на междуэтажное перекрытие  

702,9

1,2

843,48

6. Полезная на чердачное перекрытие  

73,22

1,2

87,86

Итого:

931,34

7. Кратковременная снеговая расчётная

124,96

1,4

174,94

8. . Полезн. кратк. на междуэтажное перекрытие

 

     190,39

1,2

228,44

9. Полезн. кратк. на чердачное перекрытие  

 24,41

1,2

29,29

Итого:

432,67

Длительная нагрузка кН

Кратковременная нагрузка кН

Полная кН

Список используемой литературы:

1) СНиП 2.03.01-84* «Бетонные и железобетонные конструкции»

2) А.П. Мандриков «Примеры расчёта железобетонных конструкций» Учеб. пособие для техникумов.-2-е изд., переработанное и дополненное. -М.: Стройиздат, 1989.-506 с.

4) «Проектирование железобетонных конструкций»: Справочное пособие/А.Б. Голышев,В.Я. Бачинский, В.П. Полищук, А.В. Харченко, И.В. Руденко; Под ред. А.В. Голышева.-2-е изд., перераб. и доп.-К.:Будивельник, 1990.-544 с.: ил.-(Б-ка проектировщика)


 

А также другие работы, которые могут Вас заинтересовать

17749. Основы теории подобия насосов 451 KB
  Лекция 5. Основы теории подобия насосов. Теория подобия создавалась для накопления и хранения экспериментальных данных а также для их использования на объектах подобных между собой. Во все времена перед созданием достаточно крупного и ценного изделия старались сдела
17750. Кавитация в насосах и способы её учёта при выполнении расчётов 233 KB
  Лекция 6. Кавитация в насосах и способы её учёта при выполнении расчётов. Кавитацией в насосах обычно называют процессы сопровождающие вскипание жидкости в области входа в насос. Вскипание связано с падением давления в этой области и в зависимости от величины падения д
17751. Расчёт ступени центробежного насоса 222 KB
  Лекция 7. Расчёт ступени центробежного насоса. Определение частоты вращения ротора насоса n. При известных значениях расхода жидкости Q и удельной работы ступени L частота вращения ротора n определяется с учётом существующих ограничений на этот параметр. Эти ограничения...
17752. Расчёт ступени центробежного насос. Построение лопастей колеса в меридианном сечении и в плане 369.5 KB
  Лекция 8. Расчёт ступени центробежного насоса продолжение Построение лопастей колеса в меридианном сечении и в плане. Особенностью принятого способа изображения лопастей в меридианном сечении является то что лопасти не рассекаются плоскостью а в этой плоскости сов...
17753. Конструкция и работа центробежных насосов 1.33 MB
  Лекция 9. Конструкция и работа центробежных насосов Усилия в центробежных насосах. При работе центробежных насосов на роторе возникают осевое и радиальное усилия. Причина возникновения осевого усилия объясняется на основании рис. 9.1. В соответствии с рисунком осевое у...
17754. Объёмные насосы 709 KB
  Лекция №10. Объёмные насосы Специфической особенностью всех объёмных насосов является то что их производительность в основном определяется величинами периодически замыкаемых в них объёмов и скоростью переноса этих объёмов со стороны всасывания на сторону нагнетани
17755. Действительная подача шестерённого насоса 1.66 MB
  Лекция 11. Объёмные насосы продолжение 10.3. Действительная подача шестерённого насоса. Действительная подача шестерённого насоса меньше теоретической на величину объёмных потерь . Объёмные потери определяются внутренними утечками в насосе и потерями связанны
17756. Регулирование производительности насосов 331 KB
  Лекция №12. Регулирование производительности насосов. При регулировании производительности насосов используют разные способы соединения насосов между собой и разные способы изменения параметров характеристик как насосов так и систем на которые они работают. Все эти ...
17757. Поршневые пусковые компрессоры 4.37 MB
  Лекция №13. Поршневые пусковые компрессоры. 13.1. Устройство и работа поршневых пусковых компрессоров. На рис. 13.1 представлена принципиальная схема одноступенчатого поршневого компрессора. Поршень движется в цилиндре возвратнопоступательно от верхней мёртвой точки ВМ...