69602

ЗАКАЛКА И ОТПУСК СТАЛЕЙ

Лабораторная работа

Производство и промышленные технологии

Закалкой стали называется операция термической обработки проводимая с целью получения структуры мартенсита. Поэтому для доэвтектоидной стали температура нагрева под закалку должна быть на 2030 выше точки Ас3. Нагрев доэвтектоидной стали но выше Ас1 не рекомендуется...

Русский

2014-10-07

566.5 KB

2 чел.

ЛАБОРАТОРНАЯ РАБОТА № 4

ЗАКАЛКА И ОТПУСК СТАЛЕЙ

Цель работы.

Ознакомление с основным упрочняющим режимом термической обработки - закалкой стели.  Отпуск стали - как режим термической  обработки,  изменявший свойства  закаленной стали.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Закалкой стали называется операция термической обработки,  проводимая с целью получения структуры мартенсита. Для получения мартенсита проводится нагрев до температуры, выше критической,  после чего изделие быстро охлаждается.   Температура нагрева под закалку определяется составом сплава  и для углеродистых сталей ее можно определить по диаграмме FeFe3C.  При нагреве доэвтектоидных сталей до температуры выше Ас1, перлит превращается в аустенит. Дальнейший нагрев приводит к непрерывному превращение феррита в аустенит и выше точки Ас3, сталь состоит из однородного аустенита. Дальнейшее повышение температуры приводит к росту, зерна аустенита. Поэтому для доэвтектоидной стали температура нагрева под закалку должна быть на 20-30° выше точки Ас3.

Нагрев доэвтектоидной стали но выше Ас1 не рекомендуется, так как в структуре остается некоторое количество феррита и это приводит к ухудшению механических свойств.

Заэвтектоидная сталь при нагреве до температуры выше Ас1 состоит из аустенита и вторичного цементита. Присутствие вторичного цементита увеличивает твердость и износостойкость закаленной стали. Нагрев заэвтектоидной стали выше Асш проводит к растворение вторичного цементина, укрупнение зерна, увеличение закалочных напряжения и обезуглероживание стели с поверхности. Поэтому температуры нагрева под закалку для эаэвтектоидной стали должны быть на 30-50° выше, точки Ас1.

ЗАКАЛОЧНЫЕ СРЕДЫ

Для получения скорости охлаждения выше верхней критической (Vk1) охлаждение следует проводить в интенсивно охлаждающих (закалочных) средах.  Такими средами для углеродистых сталей является:

1. Вода.

2. Минеральное масло.

3. Растворы солей, кислот, щелочей.

При выборе закалочной среды следует учитывать следующие факторы:

1. Скорость охлаждения должна быть максимальна в температурном диапазоне наименьшей устойчивости переохлажденного аустенита (≈550°).

2. Скорость охлаждения должна быть небольшой при  температуре, близкой к точке Мн. При этой температуре возникает закалочные напряжения, связанные с неравномерным охлаждением изделия по объему (структурные напряжения).

3.   Критическая скорость охлаждения зависит от состава аустенита.

Табл.1. Скорость охлаждения различных закалочных сред в температурном диапазоне 500-600° и при температуре меньше 300°.

Среда

Скорость охлаждения в интервале температур (градус/секунда)

500 - 600°

ниже 300°

Вода 

600

270

10% Na Cl + вода 

750

300

10% Na OH + вода 

1200

300

Минеральное масло 

120-150

20-30

Расплав солей 50% NaNO3+50%KNO3

250-200

40-50

Воздух (струя)

30

7

Спокойный воздух 

5-8

2

ОТПУСК СТАЛИ

Отпуском называется нагрев  закаленной стали до температур, не превышающих критической точки Ас1. Отпуск проводят для снижения хрупкости, уменьшения твердости, увеличения пластичности и ударной вязкости, для получения более стабильного состояния. Изменение перечисленных свойств определяется структурным изменениям. Получавшаяся при закалке структура состоит из мартенсита и остаточного аустенита. Обе фазы нестабильны. При нагреве проходят процессы образования более стабильных структур. Различают 3 вида отпуска.

1. Низкотемпературный отпуск - нагрев закаленной стали до температур 120-250°С.  При таких температурах распадается мартенсит с образованием кабида Fe2C и уменьшением концентрации углерода в мартенсите закалки. В результате низкого отпуска уменьшается хрупкость, несколько возрастает прочность и вязкость стали. Твердость при температурах до 150° остается практически неизменной.

2. Среднетемпературный отпуск - нагрев закаленной стали до температур 350-450°. При таких температурах продолжается распад мартенсита с уменьшением концентрации углерода в мартенсите отпуска, причем каждой температуре нагрева соответствует определенное содержание углерода. При 350-400° концентрация углерода в мартенсите становится близкой к равновесной, распадается остаточный аустенит с образованней отпущенного мартенсита и карбидов; карбид превращается в цементит. Перечисленные процессы приводят к снижению твердости, прочности, хрупкости. Увеличивается пластичность, предел упругости, предел выносливости.

3. Высокотемпературный отпуск - нагрев закаленной стали до температур 500-650°С.  При таких температурах проходит рекристаллизация феррита, коагуляция карбидов.  Прочность и твердость снижаются, пластичность увеличивается. Высокий отпуск создает наилучшие соотношение прочности и вязкости стали,  Термическую обработку, состоящую из закалки и высокого отпуска,  называют улучшением.

Марка стали

Температура закалки

Твердость до закалки (НRC)

Твердость после закалки (НRC)

Твердость после отпуска  (НRC)

200°С

400°С

600°С

Сталь 45

Сталь 48

Конструкционная сталь

HRC

60

50

40

30

20

10

0

t, °С

                        200               400             600                                


 

А также другие работы, которые могут Вас заинтересовать

34742. Историческая хронология. Предмет и задачи. Виды календарных систем. Основные понятия и термины 17.43 KB
  В этом календаре год состоял из 365 дней. по 30 дней каждый; в конце года добавлялось пять праздничных дней не входивших в состав месяцев. В течение каждых 19 лет считают 12 лет по 12 лунных месяцев по 29 30 дней и 7 лет по 13 лунных месяцев. лунносолнечный календарь является официальным в Израиле где начало года приходится на один из дней периода с 5 сентября по 5 октября.
34743. Древние календарные системы: Египет, Древняя Греция, Китай 18.83 KB
  Этот лунный календарь использовался на протяжении всей древнеегипетской истории как религиозный календарь фиксирующий время проведения праздников. Схематический гражданский календарь Новый календарь был построен по простой схеме. Поздний лунный календарь Хронологической единицей в нем как и в раннем лунном календаре служил лунный месяц начинавшийся в первый день невидимости Луны.
34744. Мусульманский календарь. Мусульманская система летоисчисления 13.08 KB
  Мусульманская система летоисчисления Мусульманский исламский календарь лунный календарь используемый в исламе для определения дат религиозных праздников а также как официальный календарь в некоторых мусульманских странах. Поэтому в мусульманских странах календарь называют календарём Хиджры. Такая система до сих пор используется в некоторых странах например в Пакистане и Бангладеш. В разных странах используются разные правила.
34745. Календарные системы в Древнем Риме. Реформа Юлия Цезаря 16.15 KB
  Последующие месяцы продолжали сохранять свои числовые обозначения: Квинтилис Quintilis пятый Секстилис Sextilis шестой Септембер September седьмой Октобер Oktober восьмой Новембер November девятый Децомбер December десятый Мартиус майус квинтилис и октобер имели по 31 дню а остальные месяцы состояли из 30 дней. Очень любопытна история распределения дней по месяцам. Первоначально год римского календаря как уже говорилось состоял из 304 дней. Чтобы...
34746. Григорианская реформа и григорианский календарь 14.62 KB
  Эта разница ежегодно накапливаясь привела через 128 лет к ошибке в одни сутки а через 1280 лет уже в 10 суток. Реформа должна была решить две основные задачи: вопервых ликвидировать накопившуюся разницу в 10 суток между календарным и тропическим годами вовторых максимально приблизить календарный год к тропическому чтобы в будущем разница между ними не была ощутимой. Григорианский календарь В григорианском календаре длительность года принимается равной 3652425 суток.
34747. Единицы счета времени: месяц, неделя, сутки 12.86 KB
  Переход к земледелию и скотоводству определил необходимость учета времени его фиксирования в определенных единицах. Все основные выработанные человечеством единицы счета времени сутки месяц и год определяются астрономическими факторами: сутки периодом обращения Земли вокруг своей оси месяц периодом обращения Луны вокруг Земли год периодом обращения Земли вокруг Солнца. Для облегчения исчисления времени введено фиктивное понятие среднее солнце т.
34748. Виды летоисчисления (эры) и точки отсчета 15.88 KB
  К первым например относится эра Кали в Индии. К политическим эрам относятся те исходной точкой которых служат даты основания городов вступления на престол различных правителей и т. Такова например эра постконсулата исходной точкой которой явилось избрание последнего римского консула Флавия Василия Меньшего в 541 г.В реальных эрах за точку отсчета времени принимается историческое событие в фиктивных легендарное.
34749. Эра от Рождества Христова Дионисия Малого 11.06 KB
  эры Диоклетиана монахом Дионисием Малым. – от начала правления императора Диоклетиана около 243 – 313 гг. Римляне называли это эрой Диоклетиана. Дионисии Малый считал приличнее заменить эру язычника и противника христианства Диоклетиана другой эрой каклибо связанной с христианством.
34750. Обыденные представления человека Древней Руси о времени и хронологии 17.96 KB
  Таковы например масленица коляда от латинского календы; другое название этого праздника овсень от овесень которым отмечали поворот солнца на лето красная горка праздник встречи весны радуница и русалии весенний и летний поминальные праздники и другие.Пережиточные названия дней недели связанные с астральными культами сохранились в некоторых странах Европы до наших дней например: немецкие Montg день Луны понеденьник Sonntg день солнца воскресенье французское Vendredi день Венеры пятница...