69642

Вивчення спектрів періодичних негармонічних сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур’є. Приведемо розклади в ряд Фур’є деяких управляючих сигналів...

Украинкский

2014-10-08

176.39 KB

9 чел.

6

Лабораторна робота № 6

Тема: Вивчення спектрів періодичних негармонічних сигналів

Мета:Вивчити можливості апроксимації сигналу многочленом Фур'є по ортогональній  системі тригонометричних функцій 

Теоретична частина

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур'є. Приведемо розклади в ряд Фур'є деяких управляючих сигналів:

    прямокутного коливання - "меандра" (рис. 2.1) -

 

                                                   (2.1)

E

S(t)

-T/2

-T

T/2

0

t

Рис.2.1. Графік прямокутного коливання  - "меандра".

    періодичного пилоподібного коливання (рис. 2.2 ) -

(2.2)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис.2.2. Графік періодичного пилоподібного коливання.

    періодичної послідовності трикутних імпульсів (рис. 2.3) -

(2.3)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис. 2.3. Графік періодичної послідовності трикутних імпульсів.

Радіосигнали з тональною (гармонічною) амплітудною і кутовою модуляцією можуть бути синтезовані по ортогональній системі тригонометричних функцій кратних аргументів, якщо частота несучої 0 і модулююча частота  кратні, тобто 0 = n , де n - ціле число.

   При  амплітудній модуляції модульоване коливання можна представити у формі

У випадку тональної модуляції аналітичний  вираз АМ коливання приймає вигляд

                      (2.4)

де - коефіцієнт глибини модуляції. В цьому випадку спектр АМ коливання складається з трьох гармонічних складових

                       (2.5)

Якщо модулюючий сигнал описується виразом (2.1), то спектр АМ коливання при kE = A0  i  0 = 0 запишеться у вигляді

(2.6)

    При гармонічній кутовій модуляції аналітичний вираз коливання може бути записаний у формі

                                    (2.7)

Спектр такого коливання має вигляд

,                               (2.8)

де In(m) - функція Бесселя першого роду n-го порядку від аргумента m, m - індекс модуляції.

  Відносна середньоквадратична похибка апроксимації періодичної функції s(t) скінченним числом членів ряду Фур‘є може бути визначена за формулою

,                                               (2.9)

де Р - середня потужність сигналу; Рn - середня потужність n-ої ортогональної складової сигналу (гармоніки).

План виконання лабораторної роботи 

  1.  Розрахунок.

Розрахувати та побудувати спектри амплітуд і фаз періодичного коливання. Визначити відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

  1.  Експеримент.

Синтезувати періодичне несинусоїдальне коливання .

Методика проведення досліджень

   1.  Виберіть згідно з варіантом (табл.2.1) вигляд періодичного коливання. Розрахуйте і побудуйте його спектри амплітуд і фаз до 10-ї гармоніки включно. Визначіть відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

Таблиця 2.1.

Варіант

Форма періодичних несинусоїдальних коливань для досліджень

1

Періодичне прямокутне коливання - "меандр" (рис. 2.1)

E = 100 B ,  T = 0.0001 c

2

Періодичне пилоподібне коливання (рис. 2.2)

E = 120 B ,  T = 0.0001 c

3

Періодична послідовність трикутних імпульсів (рис. 2.3)

E = 60 B ,    T = 0.0001 c

4

Коливання з тональною амплітудною модуляцією, А0 = 60 В,

модулююча частота  F = F1= 2 кГц, 

несуча частота f0 = 5F1,

коефіцієнт модуляції М = 0,5; 1  і   M >1 

5

АМ - коливання при модуляції "меандром", якщо

Несуча частота f0 = 5F1,

Частота повторення "меандра" F = F1= 2 кГц, kE = A0 = 60 В

6

Коливання з гармонічною кутовою модуляцією, якщо А0 = 60 В,

модулююча частота F = F1 = 2 кГц,

несуча частота f0 = 5F1,

індекс модуляції m = 1,2,3

  2.1. Складіть схему для дослідження (мал.2.4). Амплітуди, частоти та початкові фази гармонік встановіть у відповідності до розрахованих в п.1.

  2.2. Вмикаючи почергово кожну гармоніку окремо, перевірте за осцилографом правильність установки параметрів гармонік.

  2.3. Увімкніть одна за одною гармоніки і спостерігайте на екрані осцилографа формування сигналу. Всі осцилограми замалюйте.

Вказівки до звіту

Звіт повинен містити:

1)  схему пристрою для синтезу сигналів за Фур"є;

2)  розрахунки та графіки спектрів синтезованого сигналу;

3)  осцилограми, які ілюструють формування сигналу при синтезі;

4)  розрахунки похибок апроксимації;

5)  висновки і оцінку отриманих результатів.

Контрольні питання

  1.  Які основні можливості програми схемотехнічного моделювання Electronics Workbench?
  2.  Як визначаються коефіцієнти ряду Фур"є?
  3.  Запишіть аналітичний вираз амплітудно-модульованого коливання.
  4.  Який вигляд має спектр АМ коливання при тональній модуляції і модуляції складним сигналом?
  5.  Запишіть аналітичний вираз ФМ коливання при гармонічний модуляції і в загальному випадку.
  6.  Запишіть аналітичний вираз ЧМ коливання при гармонічний модуляції і в загальному випадку.

Відповіді

  1.  Зібрання схеми в графічному вигляді звичайним чином. Є багато компонентів, пристроїв що можна залучати до схеми.
  2.  В більшості випадків використовують гармонічний ряд Фур’є, обчислення якого називають розкладом на гармоніки

Тут:                            nN

Де  та  - коефіціэнти тригонометричного ряду

Якщо ряд збігається то його сума рівна тригонометричної ф-ї f(x) з періодом 2π, оскілки sin(ux) та cos(ux) э періодичними з періодом 2π.

  1.  При амплітудній модуляції амплітудне коливання можна представити у формі:

 

  1.  У випадку тональної модуляції  аналітичний вираз AM коливання приймає вигляд  де  - коеф.глибини мобуляції.В цьому випадку спектр АМ коливання складається з трьох гармонічних складових:
  2.  При фаховій модуляції амплітуда несущого коливання U0постійна, а фаза несущого коливання ϕ(t) з модульованою напругою e(t) –   де - коефіцієнт проникності(зв'язок між  та додатнім приростом повної фази. При модуляції фази по гармонічному закону:

Повний опис фазомодульного коливання:

  1.  Частота несущого коливання :   де – коефіцієнт пропорційності (зв’язує відношення частоти від свого номінального значення . При мобулюючому сигналі в вигляді гармонічної напруги:


 

А также другие работы, которые могут Вас заинтересовать

21688. ПОСТРОЕНИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 70 KB
  3 а также об объектах 4го порядка. Рассмотрим систему объектов 1го порядка связанную универсальным интерфейсом и рассмотрим её в виде полносвязного ориентированного графа. Вершины графа означают объекты 1го порядка рёбра объекты 2го порядка. Направление стрелки на ребре указывает от какого объекта 1го порядка к какому передаётся взаимодействие.
21689. НЕЙРОННЫЕ СЕТИ 394 KB
  НЕЙРОННЫЕ СЕТИ Нейронные сети начали активно распространяться 20 лет назад они позволяют решать сложные задачи обработки данных. Нейронные сети названы так потому что их архитектура в некоторой степени имитирует построение биологической нервной ткани из нейронов в мозге человека. Первый шаг был сделан в 1943 году с выходом статьи нейрофизиолога Уоррена Маккалоха и математика Уолтера Питтса про работу искусственных нейронов и представления модели нейронной сети на электрических схемах.htm Итак нейронные сети появились как результат...
21690. ТЕХНОЛОГИИ НЕЙРОННОГО УПРАВЛЕНИЯ 181 KB
  Он составляет основу для большинства схем нейронного управления. ТЕХНОЛОГИИ НЕЙРОННОГО УПРАВЛЕНИЯ Во многих реальных системах имеются нелинейные характеристики сложные для моделирования динамические элементы неконтролируемые шумы и помехи а также множество обратных связей и другие факторы затрудняющие реализацию стратегий управления. За последние два десятилетия новые стратегии управления в основном развивались на базе современной и классической теорий управления. Как современная в частности адаптивное и оптимальное управление так и...
21691. Расширение последовательной схемы нейронного управления 106 KB
  Простая процедура обучения для эмулятора выглядит так: {рис. 109} Целью обучения является минимизация ошибки предсказания . 109} Для ускорения сходимости процесса обучения можно использовать другую модель эмулятора: {рис.
21692. Нейронный контроллер 225 KB
  Сегодня мы посмотрим что внутри у нейроконтроллера а также займёмся повышением эффективности оперативного управления. Нейронный контроллер Предположим что объект управления описываемый уравнением является обратимым. Если выход близок к выходу при соответствующих входах то многослойная нейросеть может рассматриваться как контроллер в прямой цепи управления.
21693. Обучение контроллера: подход на основе прогнозируемой ошибки выхода 361.5 KB
  Шаг 1. read ; Шаг 2. {Обучение эмулятора} for := downto 0 do begin :=; ; end; Шаг 3. {Генерация управляющего входного сигнала} :=; или :=; :=; Шаг 4.
21694. ПАРАЛЛЕЛЬНАЯ СХЕМА УПРАВЛЕНИЯ 538.5 KB
  ПАРАЛЛЕЛЬНАЯ СХЕМА УПРАВЛЕНИЯ В параллельной архитектуре нейронного управления нейронная сеть используется наравне с обычным ПИДрегулятором. Настройка выполняется таким образом чтобы выходной сигнал объекта управления как можно точнее соответствовал заданному опорному сигналу . Из этих примеров следует что даже если удастся разработать хорошую общую стратегию управления может возникнуть необходимость в её настройке с целью получения лучших практических результатов.
21695. ПРИЛОЖЕНИЯ НЕЙРОННОГО УПРАВЛЕНИЯ 453.5 KB
  Далее мы будем изучать примеры практического применения некоторых методов нейроуправления и не только нейроуправления для реальных систем. ПРИЛОЖЕНИЯ НЕЙРОННОГО УПРАВЛЕНИЯ В качестве реальной системы будем рассматривать систему управления температурой водяной ванны инвертированный маятник систему управления генератором в электрическом транспортном средстве и печь как многомерный объект управления со многими входами и выходами. Система управления температурой водяной ванны Система управления представляет собой регулятор температуры для...
21696. МЕТОДЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 286 KB
  Вычисления соответствующие действиям нечёткого контроллера в системе управления температурой водяной ванны можно представить в виде следующего алгоритма: Шаг 1. Гн Омату рассматривает помимо нейросетевого и нечёткого управления ещё два способа управления водяной ванной. По результатам экспериментов из всех схем управления схема ПИД наиболее проста в реализации.