69642

Вивчення спектрів періодичних негармонічних сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур’є. Приведемо розклади в ряд Фур’є деяких управляючих сигналів...

Украинкский

2014-10-08

176.39 KB

9 чел.

6

Лабораторна робота № 6

Тема: Вивчення спектрів періодичних негармонічних сигналів

Мета:Вивчити можливості апроксимації сигналу многочленом Фур'є по ортогональній  системі тригонометричних функцій 

Теоретична частина

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур'є. Приведемо розклади в ряд Фур'є деяких управляючих сигналів:

    прямокутного коливання - "меандра" (рис. 2.1) -

 

                                                   (2.1)

E

S(t)

-T/2

-T

T/2

0

t

Рис.2.1. Графік прямокутного коливання  - "меандра".

    періодичного пилоподібного коливання (рис. 2.2 ) -

(2.2)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис.2.2. Графік періодичного пилоподібного коливання.

    періодичної послідовності трикутних імпульсів (рис. 2.3) -

(2.3)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис. 2.3. Графік періодичної послідовності трикутних імпульсів.

Радіосигнали з тональною (гармонічною) амплітудною і кутовою модуляцією можуть бути синтезовані по ортогональній системі тригонометричних функцій кратних аргументів, якщо частота несучої 0 і модулююча частота  кратні, тобто 0 = n , де n - ціле число.

   При  амплітудній модуляції модульоване коливання можна представити у формі

У випадку тональної модуляції аналітичний  вираз АМ коливання приймає вигляд

                      (2.4)

де - коефіцієнт глибини модуляції. В цьому випадку спектр АМ коливання складається з трьох гармонічних складових

                       (2.5)

Якщо модулюючий сигнал описується виразом (2.1), то спектр АМ коливання при kE = A0  i  0 = 0 запишеться у вигляді

(2.6)

    При гармонічній кутовій модуляції аналітичний вираз коливання може бути записаний у формі

                                    (2.7)

Спектр такого коливання має вигляд

,                               (2.8)

де In(m) - функція Бесселя першого роду n-го порядку від аргумента m, m - індекс модуляції.

  Відносна середньоквадратична похибка апроксимації періодичної функції s(t) скінченним числом членів ряду Фур‘є може бути визначена за формулою

,                                               (2.9)

де Р - середня потужність сигналу; Рn - середня потужність n-ої ортогональної складової сигналу (гармоніки).

План виконання лабораторної роботи 

  1.  Розрахунок.

Розрахувати та побудувати спектри амплітуд і фаз періодичного коливання. Визначити відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

  1.  Експеримент.

Синтезувати періодичне несинусоїдальне коливання .

Методика проведення досліджень

   1.  Виберіть згідно з варіантом (табл.2.1) вигляд періодичного коливання. Розрахуйте і побудуйте його спектри амплітуд і фаз до 10-ї гармоніки включно. Визначіть відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

Таблиця 2.1.

Варіант

Форма періодичних несинусоїдальних коливань для досліджень

1

Періодичне прямокутне коливання - "меандр" (рис. 2.1)

E = 100 B ,  T = 0.0001 c

2

Періодичне пилоподібне коливання (рис. 2.2)

E = 120 B ,  T = 0.0001 c

3

Періодична послідовність трикутних імпульсів (рис. 2.3)

E = 60 B ,    T = 0.0001 c

4

Коливання з тональною амплітудною модуляцією, А0 = 60 В,

модулююча частота  F = F1= 2 кГц, 

несуча частота f0 = 5F1,

коефіцієнт модуляції М = 0,5; 1  і   M >1 

5

АМ - коливання при модуляції "меандром", якщо

Несуча частота f0 = 5F1,

Частота повторення "меандра" F = F1= 2 кГц, kE = A0 = 60 В

6

Коливання з гармонічною кутовою модуляцією, якщо А0 = 60 В,

модулююча частота F = F1 = 2 кГц,

несуча частота f0 = 5F1,

індекс модуляції m = 1,2,3

  2.1. Складіть схему для дослідження (мал.2.4). Амплітуди, частоти та початкові фази гармонік встановіть у відповідності до розрахованих в п.1.

  2.2. Вмикаючи почергово кожну гармоніку окремо, перевірте за осцилографом правильність установки параметрів гармонік.

  2.3. Увімкніть одна за одною гармоніки і спостерігайте на екрані осцилографа формування сигналу. Всі осцилограми замалюйте.

Вказівки до звіту

Звіт повинен містити:

1)  схему пристрою для синтезу сигналів за Фур"є;

2)  розрахунки та графіки спектрів синтезованого сигналу;

3)  осцилограми, які ілюструють формування сигналу при синтезі;

4)  розрахунки похибок апроксимації;

5)  висновки і оцінку отриманих результатів.

Контрольні питання

  1.  Які основні можливості програми схемотехнічного моделювання Electronics Workbench?
  2.  Як визначаються коефіцієнти ряду Фур"є?
  3.  Запишіть аналітичний вираз амплітудно-модульованого коливання.
  4.  Який вигляд має спектр АМ коливання при тональній модуляції і модуляції складним сигналом?
  5.  Запишіть аналітичний вираз ФМ коливання при гармонічний модуляції і в загальному випадку.
  6.  Запишіть аналітичний вираз ЧМ коливання при гармонічний модуляції і в загальному випадку.

Відповіді

  1.  Зібрання схеми в графічному вигляді звичайним чином. Є багато компонентів, пристроїв що можна залучати до схеми.
  2.  В більшості випадків використовують гармонічний ряд Фур’є, обчислення якого називають розкладом на гармоніки

Тут:                            nN

Де  та  - коефіціэнти тригонометричного ряду

Якщо ряд збігається то його сума рівна тригонометричної ф-ї f(x) з періодом 2π, оскілки sin(ux) та cos(ux) э періодичними з періодом 2π.

  1.  При амплітудній модуляції амплітудне коливання можна представити у формі:

 

  1.  У випадку тональної модуляції  аналітичний вираз AM коливання приймає вигляд  де  - коеф.глибини мобуляції.В цьому випадку спектр АМ коливання складається з трьох гармонічних складових:
  2.  При фаховій модуляції амплітуда несущого коливання U0постійна, а фаза несущого коливання ϕ(t) з модульованою напругою e(t) –   де - коефіцієнт проникності(зв'язок між  та додатнім приростом повної фази. При модуляції фази по гармонічному закону:

Повний опис фазомодульного коливання:

  1.  Частота несущого коливання :   де – коефіцієнт пропорційності (зв’язує відношення частоти від свого номінального значення . При мобулюючому сигналі в вигляді гармонічної напруги:


 

А также другие работы, которые могут Вас заинтересовать

85446. Разработка конструкции ПП. Предварительный расчет надежности 627.55 KB
  Печатная плата ПП -– изделие состоящее из плоского изоляционного основания с отверстиями пазами вырезами и системой токопроводящих полосок металла проводников которые используют для установки и коммутации электрорадиоизделия ЭРИ и функциональных узлов в соответствии с электрической принципиальной схемой
85448. Расчет кинематических параметров манипулятора и моделирование в среде SimMechanics 383.02 KB
  Расчет кинематических параметров манипулятора и моделирование в среде SimMechanics. На Рис.1 показана схема четырехзвенного манипулятора. Необходимо: Определить параметры манипулятора по представлению Денавита - Хартенберга (системы координат и параметры звеньев).
85449. Изучение конструкции компрессорных установок, работы основных элементов аппаратуры, технических характеристик 1.35 MB
  Существующий унифицированный комплект аппаратуры автоматизации шахтных компрессорных станций типа УКАСМ предназначен для автоматического управления шахтными компрессорными станциями оборудованными поршневыми и центробежными компрессорами.
85450. Сети нового поколения. Концепция NGN 1.21 MB
  При этом ресурсы одной сети не могут использоваться другой сетью по ряду причин правовые конкурентные рыночные и др. В первой главе я попытаюсь дать описание сети нового поколения обозначить её преимущества и актуальность внедрения на российский рынок связи. В результате обеспечивается централизация при которой число иерархических уровней в телекоммуникационной сети начинает уменьшаться вследствие роста производительности процессоров. Наиболее простым вариантом реализации обмена данными между двумя точками является связь двух персональных...
85453. В.Нестайко «Космонавти з нашого будинку» 43 KB
  Мета: ознайомити учнів з особистістю В.Нестайка, викликати інтерес до його творчості; удосконалювати читацькі навички, уміння складати план і стисло переказувати прочитане. Збагачувати активний словниковий запас учнів; розвивати уміння характеризувати дійових осіб.