69642

Вивчення спектрів періодичних негармонічних сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур’є. Приведемо розклади в ряд Фур’є деяких управляючих сигналів...

Украинкский

2014-10-08

176.39 KB

9 чел.

6

Лабораторна робота № 6

Тема: Вивчення спектрів періодичних негармонічних сигналів

Мета:Вивчити можливості апроксимації сигналу многочленом Фур'є по ортогональній  системі тригонометричних функцій 

Теоретична частина

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур'є. Приведемо розклади в ряд Фур'є деяких управляючих сигналів:

    прямокутного коливання - "меандра" (рис. 2.1) -

 

                                                   (2.1)

E

S(t)

-T/2

-T

T/2

0

t

Рис.2.1. Графік прямокутного коливання  - "меандра".

    періодичного пилоподібного коливання (рис. 2.2 ) -

(2.2)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис.2.2. Графік періодичного пилоподібного коливання.

    періодичної послідовності трикутних імпульсів (рис. 2.3) -

(2.3)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис. 2.3. Графік періодичної послідовності трикутних імпульсів.

Радіосигнали з тональною (гармонічною) амплітудною і кутовою модуляцією можуть бути синтезовані по ортогональній системі тригонометричних функцій кратних аргументів, якщо частота несучої 0 і модулююча частота  кратні, тобто 0 = n , де n - ціле число.

   При  амплітудній модуляції модульоване коливання можна представити у формі

У випадку тональної модуляції аналітичний  вираз АМ коливання приймає вигляд

                      (2.4)

де - коефіцієнт глибини модуляції. В цьому випадку спектр АМ коливання складається з трьох гармонічних складових

                       (2.5)

Якщо модулюючий сигнал описується виразом (2.1), то спектр АМ коливання при kE = A0  i  0 = 0 запишеться у вигляді

(2.6)

    При гармонічній кутовій модуляції аналітичний вираз коливання може бути записаний у формі

                                    (2.7)

Спектр такого коливання має вигляд

,                               (2.8)

де In(m) - функція Бесселя першого роду n-го порядку від аргумента m, m - індекс модуляції.

  Відносна середньоквадратична похибка апроксимації періодичної функції s(t) скінченним числом членів ряду Фур‘є може бути визначена за формулою

,                                               (2.9)

де Р - середня потужність сигналу; Рn - середня потужність n-ої ортогональної складової сигналу (гармоніки).

План виконання лабораторної роботи 

  1.  Розрахунок.

Розрахувати та побудувати спектри амплітуд і фаз періодичного коливання. Визначити відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

  1.  Експеримент.

Синтезувати періодичне несинусоїдальне коливання .

Методика проведення досліджень

   1.  Виберіть згідно з варіантом (табл.2.1) вигляд періодичного коливання. Розрахуйте і побудуйте його спектри амплітуд і фаз до 10-ї гармоніки включно. Визначіть відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

Таблиця 2.1.

Варіант

Форма періодичних несинусоїдальних коливань для досліджень

1

Періодичне прямокутне коливання - "меандр" (рис. 2.1)

E = 100 B ,  T = 0.0001 c

2

Періодичне пилоподібне коливання (рис. 2.2)

E = 120 B ,  T = 0.0001 c

3

Періодична послідовність трикутних імпульсів (рис. 2.3)

E = 60 B ,    T = 0.0001 c

4

Коливання з тональною амплітудною модуляцією, А0 = 60 В,

модулююча частота  F = F1= 2 кГц, 

несуча частота f0 = 5F1,

коефіцієнт модуляції М = 0,5; 1  і   M >1 

5

АМ - коливання при модуляції "меандром", якщо

Несуча частота f0 = 5F1,

Частота повторення "меандра" F = F1= 2 кГц, kE = A0 = 60 В

6

Коливання з гармонічною кутовою модуляцією, якщо А0 = 60 В,

модулююча частота F = F1 = 2 кГц,

несуча частота f0 = 5F1,

індекс модуляції m = 1,2,3

  2.1. Складіть схему для дослідження (мал.2.4). Амплітуди, частоти та початкові фази гармонік встановіть у відповідності до розрахованих в п.1.

  2.2. Вмикаючи почергово кожну гармоніку окремо, перевірте за осцилографом правильність установки параметрів гармонік.

  2.3. Увімкніть одна за одною гармоніки і спостерігайте на екрані осцилографа формування сигналу. Всі осцилограми замалюйте.

Вказівки до звіту

Звіт повинен містити:

1)  схему пристрою для синтезу сигналів за Фур"є;

2)  розрахунки та графіки спектрів синтезованого сигналу;

3)  осцилограми, які ілюструють формування сигналу при синтезі;

4)  розрахунки похибок апроксимації;

5)  висновки і оцінку отриманих результатів.

Контрольні питання

  1.  Які основні можливості програми схемотехнічного моделювання Electronics Workbench?
  2.  Як визначаються коефіцієнти ряду Фур"є?
  3.  Запишіть аналітичний вираз амплітудно-модульованого коливання.
  4.  Який вигляд має спектр АМ коливання при тональній модуляції і модуляції складним сигналом?
  5.  Запишіть аналітичний вираз ФМ коливання при гармонічний модуляції і в загальному випадку.
  6.  Запишіть аналітичний вираз ЧМ коливання при гармонічний модуляції і в загальному випадку.

Відповіді

  1.  Зібрання схеми в графічному вигляді звичайним чином. Є багато компонентів, пристроїв що можна залучати до схеми.
  2.  В більшості випадків використовують гармонічний ряд Фур’є, обчислення якого називають розкладом на гармоніки

Тут:                            nN

Де  та  - коефіціэнти тригонометричного ряду

Якщо ряд збігається то його сума рівна тригонометричної ф-ї f(x) з періодом 2π, оскілки sin(ux) та cos(ux) э періодичними з періодом 2π.

  1.  При амплітудній модуляції амплітудне коливання можна представити у формі:

 

  1.  У випадку тональної модуляції  аналітичний вираз AM коливання приймає вигляд  де  - коеф.глибини мобуляції.В цьому випадку спектр АМ коливання складається з трьох гармонічних складових:
  2.  При фаховій модуляції амплітуда несущого коливання U0постійна, а фаза несущого коливання ϕ(t) з модульованою напругою e(t) –   де - коефіцієнт проникності(зв'язок між  та додатнім приростом повної фази. При модуляції фази по гармонічному закону:

Повний опис фазомодульного коливання:

  1.  Частота несущого коливання :   де – коефіцієнт пропорційності (зв’язує відношення частоти від свого номінального значення . При мобулюючому сигналі в вигляді гармонічної напруги:


 

А также другие работы, которые могут Вас заинтересовать

12360. Ремонт стартера 427 KB
  Стартер является основным прибором системы пуска двигателя и представляет собой четырехнолюсный электродвигатель для преобразования электрической энергии аккумуляторной батареи в механическую и передачи ее на маховик с целью прокрутки коленчатого вала двигателя.
12361. Определение характеристик постоянного магнита по измерениям с датчиком Холла 249.5 KB
  Лабораторная работа № 16 Определение характеристик постоянного магнита по измерениям с датчиком Холла 1. Цель работы: Определение характеристик постоянного магнита по измерениям с датчиком Холла. 2. Эффект Холла. Эффект Холла заключается в том что если пропустит...
12362. Исследование характеристик поперечного датчика Холла 266.5 KB
  Лабораторная работа № 15 Исследование характеристик поперечного датчика Холла 1. Цель работы: Исследование характеристик поперечного датчика Холла 2. Эффект Холла. Эффект Холла заключается в том что если пропустить через металлическую или полупроводниковую пла
12363. Исследование характеристик продольного датчика Холла 266.5 KB
  Лабораторная работа № 14 Исследование характеристик продольного датчика Холла. 1. Цель работы: Изучение эффекта Холла. 2. Эффект Холла. Эффект Холла заключается в том что если пропустить через металлическую или полупроводниковую пластину рис.14.1. электрический то
12364. Вихревое электрическое поле 3.2 MB
  3 Лабораторная работа № 13 Вихревое электрическое поле 1. Цель работы. Изучение вихревого электрического поля при изменении магнитного поля в соленоиде. 2. Электромагнитная индукция. Вихревое электрическое поле. Явление электромагнитной индукции...
12365. Изучение явления магнитного гистерезиса 4.23 MB
  17 PAGE 16 Лабораторная работа № 12 Изучение явления магнитного гистерезиса 1. Цель работы. Проведение измерений цикла перемагничивания ферромагнетика. 2. Электронный осциллограф. Прибор предназначен для исследования быстропеременных периодичес
12366. Измерение магнитной проницаемости ферромагнетика индукционным методом 249 KB
  Лабораторная работа № 11 Измерение магнитной проницаемости ферромагнетика индукционным методом 1. Цель работы: Измерить магнитные проницаемости образцов стали и феррита индукционным методом. 2. Магнитные свойства вещества. Нейтральные молекулы и атомы веществ
12367. Измерение магнитного поля постоянного кольцевого магнита 226 KB
  Лабораторная работа № 10 Измерение магнитного поля постоянного кольцевого магнита 1. Цель работы. Измерить магнитное поле на оси постоянного кольцевого магнита и рассчитать его параметры. 2. Магнитные свойства вещества. Постоянные магниты. Нейтральные молекулы
12368. Магнитное поле Земли. Измерение горизонтальной составляющей магнитного поля Земли 141 KB
  Измерение горизонтальной составляющей магнитного поля Земли. Цель работы: измерение горизонтальной составляющей магнитного поля Земли. Магнитное поле Земли. Магнитное поле Земли подобно полю равномерно намагниченного шара. Полюса м