69642

Вивчення спектрів періодичних негармонічних сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур’є. Приведемо розклади в ряд Фур’є деяких управляючих сигналів...

Украинкский

2014-10-08

176.39 KB

9 чел.

6

Лабораторна робота № 6

Тема: Вивчення спектрів періодичних негармонічних сигналів

Мета:Вивчити можливості апроксимації сигналу многочленом Фур'є по ортогональній  системі тригонометричних функцій 

Теоретична частина

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур'є. Приведемо розклади в ряд Фур'є деяких управляючих сигналів:

    прямокутного коливання - "меандра" (рис. 2.1) -

 

                                                   (2.1)

E

S(t)

-T/2

-T

T/2

0

t

Рис.2.1. Графік прямокутного коливання  - "меандра".

    періодичного пилоподібного коливання (рис. 2.2 ) -

(2.2)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис.2.2. Графік періодичного пилоподібного коливання.

    періодичної послідовності трикутних імпульсів (рис. 2.3) -

(2.3)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис. 2.3. Графік періодичної послідовності трикутних імпульсів.

Радіосигнали з тональною (гармонічною) амплітудною і кутовою модуляцією можуть бути синтезовані по ортогональній системі тригонометричних функцій кратних аргументів, якщо частота несучої 0 і модулююча частота  кратні, тобто 0 = n , де n - ціле число.

   При  амплітудній модуляції модульоване коливання можна представити у формі

У випадку тональної модуляції аналітичний  вираз АМ коливання приймає вигляд

                      (2.4)

де - коефіцієнт глибини модуляції. В цьому випадку спектр АМ коливання складається з трьох гармонічних складових

                       (2.5)

Якщо модулюючий сигнал описується виразом (2.1), то спектр АМ коливання при kE = A0  i  0 = 0 запишеться у вигляді

(2.6)

    При гармонічній кутовій модуляції аналітичний вираз коливання може бути записаний у формі

                                    (2.7)

Спектр такого коливання має вигляд

,                               (2.8)

де In(m) - функція Бесселя першого роду n-го порядку від аргумента m, m - індекс модуляції.

  Відносна середньоквадратична похибка апроксимації періодичної функції s(t) скінченним числом членів ряду Фур‘є може бути визначена за формулою

,                                               (2.9)

де Р - середня потужність сигналу; Рn - середня потужність n-ої ортогональної складової сигналу (гармоніки).

План виконання лабораторної роботи 

  1.  Розрахунок.

Розрахувати та побудувати спектри амплітуд і фаз періодичного коливання. Визначити відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

  1.  Експеримент.

Синтезувати періодичне несинусоїдальне коливання .

Методика проведення досліджень

   1.  Виберіть згідно з варіантом (табл.2.1) вигляд періодичного коливання. Розрахуйте і побудуйте його спектри амплітуд і фаз до 10-ї гармоніки включно. Визначіть відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

Таблиця 2.1.

Варіант

Форма періодичних несинусоїдальних коливань для досліджень

1

Періодичне прямокутне коливання - "меандр" (рис. 2.1)

E = 100 B ,  T = 0.0001 c

2

Періодичне пилоподібне коливання (рис. 2.2)

E = 120 B ,  T = 0.0001 c

3

Періодична послідовність трикутних імпульсів (рис. 2.3)

E = 60 B ,    T = 0.0001 c

4

Коливання з тональною амплітудною модуляцією, А0 = 60 В,

модулююча частота  F = F1= 2 кГц, 

несуча частота f0 = 5F1,

коефіцієнт модуляції М = 0,5; 1  і   M >1 

5

АМ - коливання при модуляції "меандром", якщо

Несуча частота f0 = 5F1,

Частота повторення "меандра" F = F1= 2 кГц, kE = A0 = 60 В

6

Коливання з гармонічною кутовою модуляцією, якщо А0 = 60 В,

модулююча частота F = F1 = 2 кГц,

несуча частота f0 = 5F1,

індекс модуляції m = 1,2,3

  2.1. Складіть схему для дослідження (мал.2.4). Амплітуди, частоти та початкові фази гармонік встановіть у відповідності до розрахованих в п.1.

  2.2. Вмикаючи почергово кожну гармоніку окремо, перевірте за осцилографом правильність установки параметрів гармонік.

  2.3. Увімкніть одна за одною гармоніки і спостерігайте на екрані осцилографа формування сигналу. Всі осцилограми замалюйте.

Вказівки до звіту

Звіт повинен містити:

1)  схему пристрою для синтезу сигналів за Фур"є;

2)  розрахунки та графіки спектрів синтезованого сигналу;

3)  осцилограми, які ілюструють формування сигналу при синтезі;

4)  розрахунки похибок апроксимації;

5)  висновки і оцінку отриманих результатів.

Контрольні питання

  1.  Які основні можливості програми схемотехнічного моделювання Electronics Workbench?
  2.  Як визначаються коефіцієнти ряду Фур"є?
  3.  Запишіть аналітичний вираз амплітудно-модульованого коливання.
  4.  Який вигляд має спектр АМ коливання при тональній модуляції і модуляції складним сигналом?
  5.  Запишіть аналітичний вираз ФМ коливання при гармонічний модуляції і в загальному випадку.
  6.  Запишіть аналітичний вираз ЧМ коливання при гармонічний модуляції і в загальному випадку.

Відповіді

  1.  Зібрання схеми в графічному вигляді звичайним чином. Є багато компонентів, пристроїв що можна залучати до схеми.
  2.  В більшості випадків використовують гармонічний ряд Фур’є, обчислення якого називають розкладом на гармоніки

Тут:                            nN

Де  та  - коефіціэнти тригонометричного ряду

Якщо ряд збігається то його сума рівна тригонометричної ф-ї f(x) з періодом 2π, оскілки sin(ux) та cos(ux) э періодичними з періодом 2π.

  1.  При амплітудній модуляції амплітудне коливання можна представити у формі:

 

  1.  У випадку тональної модуляції  аналітичний вираз AM коливання приймає вигляд  де  - коеф.глибини мобуляції.В цьому випадку спектр АМ коливання складається з трьох гармонічних складових:
  2.  При фаховій модуляції амплітуда несущого коливання U0постійна, а фаза несущого коливання ϕ(t) з модульованою напругою e(t) –   де - коефіцієнт проникності(зв'язок між  та додатнім приростом повної фази. При модуляції фази по гармонічному закону:

Повний опис фазомодульного коливання:

  1.  Частота несущого коливання :   де – коефіцієнт пропорційності (зв’язує відношення частоти від свого номінального значення . При мобулюючому сигналі в вигляді гармонічної напруги:


 

А также другие работы, которые могут Вас заинтересовать

34338. Пр-во азотных мин.удобрений и их классификация 30.5 KB
  Прво азотных мин. Большинство азотных удобрений получают нейтрализацией кислот щёлочами.глубину потери 225; поглощается по типу обменной адсорбции Карбамид мочевина 2NH3CO2=NH2COONH4= =CONH22H2O 2000C; 20 МПа 466 Лучшее удобрение для внекорневой подкормки растений Аммиачная селитра NH3HNO3=NH4NO3Q 3435 Закисляет почву гигроскопична слеживается взрывоопасна Сульфат аммония 2NH3H2SO4=NH42SO4Q 20521 Эффективен под орошаемые культуры рис хлопчатник Среди азотных удобрений самая большая массовая доля азота в...
34339. Фосфорная кислота 24 KB
  Н3РО4 безводная фосф кислота представляет собой бесцветное вещество плавящиеся при температуре 42. Однако на практике имеют дело с жидкой Н3РО4 что объясняется склонностью Н3РО4 к переохлаждению при темп 121С При небольшом переохлаждении она представляет собой густую сиропоподобную жидкость плотностью 188 г см^3 При нагревании водные растворы ортофосф кислоты теряют воду образуя пирафосфорная а затем метофосф кислота. Безводная ортофосф кислота очень агрессивна.
34340. Особенности производства калийных удобрений 29 KB
  Выделение хлористого калия из сильвинитовых руд может быть основано на различии механических физических или химических свойств составляющих компонентов. Переработка сильвинитов для получения хлористого калия по галургическому методу основана на физикохимических особенностях системы NCl КС1 Н2О. Эта особенность системы NCl КС1 Н2О используется для производства хлористого калия из сильвинитов по галургическому методу. Рационально построенная схема производства хлористого калия из сильвинита должна учитывать следующие технологические...
34341. Фосфорные минеральные удобрения 24 KB
  Фосфорные минеральные удобрения Фосф. К фосфорным удобрениям относятся простой и двойной суперфосфат принадлежащие к классу водорастворимых удобрений и комплексные удобрения. Фосфор вносят в почву и с помощью сложного удобрения аммофоса. Фосфорные удобрения получают как физическими так и химическими методами.
34342. Технология производства и экономическая эффективность выпуска и использования пластмасс 30.5 KB
  Технология производства и экономическая эффективность выпуска и использования пластмасс. Изделия из пластмасс наиболее часто получают методами горячего прессования литья под давлением экструзии выдувания обработки резанием. Прессование применяется главным образом для переработки термореактивных пластмасс. термореактивная смола переводится в плавкое состояние при котором и происходит вторая стадия процесса формование; затем происходит реакция поликонденсации и пластмасса отверждается становясь неплавкой и нерастворимой.
34343. Сырьевые материалы и основы производства резины 28 KB
  Резину изготавливают с помощью вулканизации. В результате вулканизации каучук превращается в прочную эластичную упругую массу резину. В результате вулканизации молекулы каучука сливаются между собой дисульфидными мостиками в одну трехмерную макромолекулу. Большую роль играют так называемые ускорители вулканизации органические соединения содержащие серу или азот меркаптобензтиазол дифенилгуанидин и др.
34344. Основные свойства и назначения природных и искусственных строительных материалов 21 KB
  Основные свойства и назначения природных и искусственных строительных материалов. Основные свойства строительных материалов можно разделить на несколько групп. К 1ой группе относятся физические свойства материалов: плотность и пористость. Ко 2й свойства характеризующие устойчивость материала к воздействию воды и низких температур: водопоглощение влажность влагоотдача гигроскопичность водопроницаемость водо морозостойкость.
34345. Классификация и свойства керамических материалов 21.5 KB
  Классификация и свойства керамических материалов Керамические строительные материалы это искусственные каменные изделия получаемые из глиняных масс с добавками или без добавок других материалов путем формования и последующего обжига. Керамические материалы и изделия классифицируются по различным признакам. В зависимости от структуры керамические материалы разделяют на две основные группы: Плотные спекшиеся имеющие блестящий раковистый излом не пропускающие воду с водопоглощением менее 5 клинкерный кирпич для мощения дорог плитки для...
34346. Технология производства керамического кирпича 23 KB
  Технология производства керамического кирпича Несмотря на обширный ассортимент разнообразие форм и свойств керамических изделий основные этапы их производства являются общими и включают следующие стадии: Карьерные работы добыча транспортирование и хранение запаса глин подготовку глиняной массы формование изделий сушку отформованных изделий обжиг высушенных изделий обработку изделий глазурование ангобирование и прочее и упаковку. Формование изделий осуществляется преимущественно на прессах: при первом способе подготовке глиняной...