69642

Вивчення спектрів періодичних негармонічних сигналів

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур’є. Приведемо розклади в ряд Фур’є деяких управляючих сигналів...

Украинкский

2014-10-08

176.39 KB

9 чел.

6

Лабораторна робота № 6

Тема: Вивчення спектрів періодичних негармонічних сигналів

Мета:Вивчити можливості апроксимації сигналу многочленом Фур'є по ортогональній  системі тригонометричних функцій 

Теоретична частина

Для синтезу складних сигналів в якості ортогональної системи функцій можна використовувати систему тригонометричних функцій кратних аргументів, ортогональну на відрізку Т. Періодичний сигнал може бути відновлений з допомогою ряду Фур'є. Приведемо розклади в ряд Фур'є деяких управляючих сигналів:

    прямокутного коливання - "меандра" (рис. 2.1) -

 

                                                   (2.1)

E

S(t)

-T/2

-T

T/2

0

t

Рис.2.1. Графік прямокутного коливання  - "меандра".

    періодичного пилоподібного коливання (рис. 2.2 ) -

(2.2)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис.2.2. Графік періодичного пилоподібного коливання.

    періодичної послідовності трикутних імпульсів (рис. 2.3) -

(2.3)

S(t)

E

0

T

0

-T/2

-T

T/2

t

Рис. 2.3. Графік періодичної послідовності трикутних імпульсів.

Радіосигнали з тональною (гармонічною) амплітудною і кутовою модуляцією можуть бути синтезовані по ортогональній системі тригонометричних функцій кратних аргументів, якщо частота несучої 0 і модулююча частота  кратні, тобто 0 = n , де n - ціле число.

   При  амплітудній модуляції модульоване коливання можна представити у формі

У випадку тональної модуляції аналітичний  вираз АМ коливання приймає вигляд

                      (2.4)

де - коефіцієнт глибини модуляції. В цьому випадку спектр АМ коливання складається з трьох гармонічних складових

                       (2.5)

Якщо модулюючий сигнал описується виразом (2.1), то спектр АМ коливання при kE = A0  i  0 = 0 запишеться у вигляді

(2.6)

    При гармонічній кутовій модуляції аналітичний вираз коливання може бути записаний у формі

                                    (2.7)

Спектр такого коливання має вигляд

,                               (2.8)

де In(m) - функція Бесселя першого роду n-го порядку від аргумента m, m - індекс модуляції.

  Відносна середньоквадратична похибка апроксимації періодичної функції s(t) скінченним числом членів ряду Фур‘є може бути визначена за формулою

,                                               (2.9)

де Р - середня потужність сигналу; Рn - середня потужність n-ої ортогональної складової сигналу (гармоніки).

План виконання лабораторної роботи 

  1.  Розрахунок.

Розрахувати та побудувати спектри амплітуд і фаз періодичного коливання. Визначити відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

  1.  Експеримент.

Синтезувати періодичне несинусоїдальне коливання .

Методика проведення досліджень

   1.  Виберіть згідно з варіантом (табл.2.1) вигляд періодичного коливання. Розрахуйте і побудуйте його спектри амплітуд і фаз до 10-ї гармоніки включно. Визначіть відносну середньоквадратичну похибку апроксимації сигналу скінченним числом  ортогональних складових.

Таблиця 2.1.

Варіант

Форма періодичних несинусоїдальних коливань для досліджень

1

Періодичне прямокутне коливання - "меандр" (рис. 2.1)

E = 100 B ,  T = 0.0001 c

2

Періодичне пилоподібне коливання (рис. 2.2)

E = 120 B ,  T = 0.0001 c

3

Періодична послідовність трикутних імпульсів (рис. 2.3)

E = 60 B ,    T = 0.0001 c

4

Коливання з тональною амплітудною модуляцією, А0 = 60 В,

модулююча частота  F = F1= 2 кГц, 

несуча частота f0 = 5F1,

коефіцієнт модуляції М = 0,5; 1  і   M >1 

5

АМ - коливання при модуляції "меандром", якщо

Несуча частота f0 = 5F1,

Частота повторення "меандра" F = F1= 2 кГц, kE = A0 = 60 В

6

Коливання з гармонічною кутовою модуляцією, якщо А0 = 60 В,

модулююча частота F = F1 = 2 кГц,

несуча частота f0 = 5F1,

індекс модуляції m = 1,2,3

  2.1. Складіть схему для дослідження (мал.2.4). Амплітуди, частоти та початкові фази гармонік встановіть у відповідності до розрахованих в п.1.

  2.2. Вмикаючи почергово кожну гармоніку окремо, перевірте за осцилографом правильність установки параметрів гармонік.

  2.3. Увімкніть одна за одною гармоніки і спостерігайте на екрані осцилографа формування сигналу. Всі осцилограми замалюйте.

Вказівки до звіту

Звіт повинен містити:

1)  схему пристрою для синтезу сигналів за Фур"є;

2)  розрахунки та графіки спектрів синтезованого сигналу;

3)  осцилограми, які ілюструють формування сигналу при синтезі;

4)  розрахунки похибок апроксимації;

5)  висновки і оцінку отриманих результатів.

Контрольні питання

  1.  Які основні можливості програми схемотехнічного моделювання Electronics Workbench?
  2.  Як визначаються коефіцієнти ряду Фур"є?
  3.  Запишіть аналітичний вираз амплітудно-модульованого коливання.
  4.  Який вигляд має спектр АМ коливання при тональній модуляції і модуляції складним сигналом?
  5.  Запишіть аналітичний вираз ФМ коливання при гармонічний модуляції і в загальному випадку.
  6.  Запишіть аналітичний вираз ЧМ коливання при гармонічний модуляції і в загальному випадку.

Відповіді

  1.  Зібрання схеми в графічному вигляді звичайним чином. Є багато компонентів, пристроїв що можна залучати до схеми.
  2.  В більшості випадків використовують гармонічний ряд Фур’є, обчислення якого називають розкладом на гармоніки

Тут:                            nN

Де  та  - коефіціэнти тригонометричного ряду

Якщо ряд збігається то його сума рівна тригонометричної ф-ї f(x) з періодом 2π, оскілки sin(ux) та cos(ux) э періодичними з періодом 2π.

  1.  При амплітудній модуляції амплітудне коливання можна представити у формі:

 

  1.  У випадку тональної модуляції  аналітичний вираз AM коливання приймає вигляд  де  - коеф.глибини мобуляції.В цьому випадку спектр АМ коливання складається з трьох гармонічних складових:
  2.  При фаховій модуляції амплітуда несущого коливання U0постійна, а фаза несущого коливання ϕ(t) з модульованою напругою e(t) –   де - коефіцієнт проникності(зв'язок між  та додатнім приростом повної фази. При модуляції фази по гармонічному закону:

Повний опис фазомодульного коливання:

  1.  Частота несущого коливання :   де – коефіцієнт пропорційності (зв’язує відношення частоти від свого номінального значення . При мобулюючому сигналі в вигляді гармонічної напруги:


 

А также другие работы, которые могут Вас заинтересовать

1609. Морфофункциональные особенности строения половых органов быка 20.86 KB
  Половые органы состоят из двух половых желез – семенников с придатками и спермиопроводов, которые включают в себя внутренние половые протоки. Придаток семенника представляет собой трубку, которая идет по всей длине семенника.
1610. Наружные методы исследования на беременность животных разных видов 19.32 KB
  Наружное исследование слагается из рефлексологического метода, осмотра, пальпации и аускультации. При осмотре устанавливается асимметрия правой и левой брюшных стенок со второй половины беременности.
1611. Нейрогуморальная регуляция беременности 21.39 KB
  Необходимым условием для возникновения и течения половых циклов является наличие двух групп гормонов: гонадотропных и гонадальных (овариальных).
1612. Неполноценные половые циклы (анэстральный, арэактивный, алибидный, ановуляторный) 19.53 KB
  Половые циклы бывают полноценными, если во время стадии возбуждения проявляются все ее феномены: течка, общая реакция, охота и овуляция, и неполноценными, когда выпадает один или несколько феноменов.
1613. Непосредственные и предрасполагающие причины маститов 19.45 KB
  Мастит – воспаление молочной железы, развивающееся как следствие воздействия механических, термических, химических и биологических факторов. Для возникновения мастита наиболее опасным является холостое доение.
1614. Особенности овуляции у животных 21.71 KB
  Процесс вскрытия созревшего фолликула и выделения из него яйцеклетки называется овуляцией. Под действием фермента коллагеназы, разрыхляющей в этой области оболочку под влиянием высокого внутрифолликулярного давления.
1615. Определение густоты и подвижности спермиев 20.29 KB
  Доброкачественная сперма содержит достаточное количество живых, устойчивых во внешней среде и способных принять участие в оплодотворении спермиев, она свободна от посторонних примесей (кровь, гной, микробы).
1616. Определение процента живых и мертвых спермиев 22.16 KB
  В.А. Морозов предложил использовать красители, которые окрашивают спермиев только мертвых и с колебательными движениями. Дегидрогеназная активность спермы быка определяется скоростью обесцвечивания метиленовой сини в капиллярах или в пробирках.
1617. Организация работы в родильных отделениях (цехах). Специфика подготовки персонала для работы в родильном отделении 19.46 KB
  В каждом животноводческом хозяйстве должны быть родильное отделение и помещение для новорожденных. Оборудование такого отделения дает возможность сохранить здоровье и продуктивность матери, здоровье и жизнь новорожденных, правильно и своевременно оказывать помощь при трудных родах.