6967

Понятие о поле. Физические поля, используемые в интроскопии

Доклад

Физика

Понятие о поле. Физические поля, используемые в интроскопии. Поле, особая форма материи физическая система, обладающая бесконечно большим числом степеней свободы. Примерами поля могут служить электромагнитное и гравитационное поля, поле ядерных сил...

Русский

2013-01-11

18.23 KB

22 чел.

Понятие о поле. Физические поля, используемые в интроскопии.

Поле, особая форма материи; физическая система, обладающая бесконечно большим числом степеней свободы. Примерами поля могут служить электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантованные) поля, соответствующие различным частицам.

Впервые (30-е гг. 19 в.) понятие поля (электрического и магнитного) было введено М. Фарадеем. Концепция поля была принята им как альтернатива теории дальнодействия, т. е. взаимодействия частиц на расстоянии без какого-либо промежуточного агента. В 60-х гг. 19 в. Дж. К. Максвелл развил идею Фарадея об электромагнитном поле и сформулировал математически его законы. Согласно концепции поля, частицы, участвующие в каком-либо взаимодействии создают в каждой точке окружающего их пространства особое состояние — поле сил, проявляющееся в силовом воздействии на др. частицы, помещаемые в какую-либо точку этого пространства. Первоначально выдвигалась механистическая интерпретация поля как упругих напряжений гипотетической среды — «эфира». Однако наделение «эфира» свойствами упругой среды оказалось в резком противоречии с результатами проведённых позднее опытов. Теория относительности, отвергнув концепцию «эфира» как особой упругой среды, вместе с тем придала фундаментальный смысл понятию «Поля физические» – как первичной физической реальности. Согласно теории относительности, скорость распространения любого взаимодействия не может превышать скорости света в вакууме. Т. о., взаимодействие частиц, относительная скорость которых сравнима со скоростью света, можно описывать только через создаваемые ими поля. Изменение состояния (или положения) одной из частиц приводит к изменению создаваемого ею поля, которое отражается на др. частице лишь через конечный промежуток времени, необходимый для распространения этого изменения до частицы.

Каждому типу взаимодействий в природе отвечают определённые поля физические. Описание физического поля в классической (не квантовой) теории поля производится с помощью одной или нескольких (непрерывных) функций поля, зависящих от координаты точки (х, у, z), в которой рассматривается поле, и от времени (t). Так, электромагнитное поле может быть полностью описано с помощью четырёх функций: скалярного потенциала φ(х, у, z, t) и вектор-потенциала А (х, у, z, t), которые вместе составляют единый четырёхмерный вектор в пространстве-времени. В общем случае число независимых полевых функций определяется числом внутренних степеней свободы частиц, соответствующих данному полю. Значения функций поля в каждой отдельной точке можно рассматривать как обобщённые координаты поля. Следовательно, поле представляется как физическая система с бесконечным числом степеней свободы. По общим правилам механики можно получить выражение для обобщённых импульсов поля и найти плотности энергии, импульса и момента количества движения поля.

Энергия и импульс поля изменяются дискретным образом, т. е. физическому полю можно поставить в соответствие определённые частицы (например, электромагнитному полю — фотоны, гравитационному — гравитоны). Это означает, что описание поля с помощью полевых функций является лишь приближением, имеющим определённую область применимости. Чтобы учесть дискретные свойства поля необходимо считать обобщённые координаты и импульсы физического поля не числами, а операторами, для которых выполняются определённые перестановочные соотношения.

В квантовой механике доказывается, что систему взаимодействующих частиц можно описать с помощью некоторого квантового поля. Т. о., не только каждому физическому полю соответствуют определённые частицы, но и, наоборот, всем известным частицам соответствуют квантованные поля. Этот факт является одним из проявлений корпускулярно-волнового дуализма материи. Квантованные поля описывают уничтожение (или рождение) частиц и одновременно рождение (уничтожение) античастиц. Таким полем является, например, электрон-позитронное поле в квантовой электродинамике.

Поля, используемые в интроскопии.

Согласно ГОСТ 18353—79 в основу классификации методов неразрушающего контроля положены физические процессы взаимодействия физического поля или вещества с объектом контроля. С точки зрения физических явлений, на которых они основаны, выделяют девять видов неразрушающего контроля: магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, акустический и проникающими веществами. Каждый из видов контроля подразделяют на методы по рассматриваемым ниже признакам.

Характер взаимодействия поля или вещества с объектом. Взаимодействие должно быть таким, чтобы контролируемый признак объекта вызывал определенные изменения поля или состояние вещества. Например, наличие несплошности вызывало изменение прошедшего через нее излучения или проникновение в нее пробного вещества. В некоторых случаях используемое для контроля физическое поле возникает под действием других физических эффектов, связанных с контролируемым признаком. Например, электродвижущая сила, возникающая при нагреве разнородных материалов, позволяет контролировать химический состав материалов (термоэлектрический эффект).

Первичный информативный параметр — конкретный параметр поля или вещества (амплитуда поля, время его распространения, количество вещества и т. д.), изменение которого используют для характеристики контролируемого объекта. Например, наличие несплошности увеличивает или уменьшает амплитуду прошедшего через нее излучения.

Способ получения первичной информации — конкретный тип датчика или вещества, которые используют для измерения и фиксации упомянутого информационного параметра.


 

А также другие работы, которые могут Вас заинтересовать

10223. Введение в Delphi 43.5 KB
  Введение в Delphi Delphi это мощная среда для скоростной разработки приложений RAD Rapid Application Development. В ее основу легли концепции объектно-ориентированного программирования на базе языка Object Pascal и визуального подхода к построению приложений. Первой средой разработки с...
10224. Среда программирования Delphi 97.5 KB
  Лабораторная работа № 1 Среда программирования Delphi Цель работы: изучить главные части рабочей среды программирования и основные части программы созданной в Delphi, научиться использовать компоненты библиотеки VCL в windowsприложении; познакомиться с компонентами классов...
10225. Стандартные компоненты Delphi 83.5 KB
  Лабораторная работа № 2 Стандартные компоненты Цель работы: изучить стандартные компоненты Delphi научиться использовать компоненты библиотеки VCL в windowsприложениях. В данной работе рассматриваются компоненты страницы Standard Палитры Компонент Delphi. В предыдущей работе...
10226. Работа с формами. Свойства TForm 166.5 KB
  Лабораторная работа № 3 Работа с формами. Свойства TForm Цель работы: изучить основные свойства класса TForm познакомится с некоторыми событиями форм; научиться использовать формы разных стилей в windowsприложениях. Форма представляет собой фундамент программы на котор
10227. Работа с формами. События TForm 58.5 KB
  Лабораторная работа № 4 Работа с формами. События TForm. Цель работы: изучить события класса TForm, научиться обрабатывать события формы в windowsприложениях. Класс ТForm добавляет несколько событий к родительскому классу TWinControl. Эти события позволяют изменять поведение фор
10228. Стиль приложений SDI 94 KB
  Лабораторная работа № 5 Стиль приложений SDI Цель работы: закрепить навыки создания приложений в стиле SDI познакомится с компонентами классаTImage и TSpeedButton научиться использовать инструментальные панели в приложении, освоить работу с буфером обмена. Термин SDI Single Document ...
10229. Ввод-вывод данных в Delphi 73.5 KB
  Лабораторная работа № 6 Вводвывод данных в Delphi. Цель работы: изучить наиболее часто используемые для организации вводавывода компоненты Edit MaskEdit Label Memo RichEdit StatusBar и встроенные диалоговые окна. Т.к. в предыдущих лабораторных работах уже было знакомство с некоторы
10230. Компоненты TStringGrid, TTreeView, TPageControl, THeaderControl и THeader 68.5 KB
  Лабораторная работа №7 Компоненты TStringGrid TTreeView TPageControl THeaderControl и THeader Цель работы: изучить часто используемые для организации вводавывода компоненты TStringGrid TTreeView TPageControl THeaderControl и THeader. TStringGrid Компонент TStringGrid представляет собой таблицу содержащую строки. Т
10231. Воспитание у древних славян 18.38 KB
  Воспитание у древних славян Воспитание детей у восточных славян при первобытнообщинном строе в период с VI в. по IX в. развивалось в той же логике и с теми же характерными особенностями что и у других первобытных народов. Первоначально процесс воспитания был неотделим от