6968

Изучение диполя. Волновая зона. Мощность изучения диполя

Доклад

Физика

Изучение диполя. Волновая зона. Мощность изучения диполя Диполь идеализированная система, служащая для приближённого описания распространения поля. Дипольное приближение основано на разложении потенциалов поля в ряд по степеням радиус-вектора...

Русский

2013-01-11

19.49 KB

22 чел.

Изучение диполя. Волновая зона. Мощность изучения диполя

Дипо́ль — идеализированная система, служащая для приближённого описания распространения поля. Дипольное приближение основано на разложении потенциалов поля в ряд по степеням радиус-вектора и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно описывать поле в случае, если:

  1. размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд;
  2. член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности;
  3. в уравнениях рассматриваются градиенты потенциалов не выше первого порядка.

Типичный пример диполя — два заряда, равных по величине и противоположных по знаку, находящихся на расстоянии друг от друга, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону

р = р0coswt,

где р0 — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +Q и отрицательного заряда -Q, гармонически колеблющегося вдоль направления р с частотой w.

Задача об излучении диполя имеет в теории излучающих систем важное значение, так как всякую реальную излучающую систему (например, антенну) можно рассчитывать рассматривая излучение диполя. Кроме того, многие вопросы взаимодействия излучения с веществом можно объяснить на основе классической теории, рассматривая атомы как системы зарядов, в которых электроны совершают гармонические колебания около их положений равновесия.

Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r>>l),— так как в ней кар-

тина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r<=l.

Если волна распространяется в однородной изотропной среде, то время прохождения волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим и, следовательно, волна, излучаемая диполем, есть сферическая волна.

В каждой точке векторы Е и Н колеблются по закону cos(wt-kr), амплитуды этих векторов пропорциональны 1/rsinq

(для вакуума), т. е. зависят от расстояния r до излучателя и угла q между направлением радиуса-вектора и осью диполя. Отсюда следует, что интенсивность излучения диполя в волновой зоне I~sin2q/r2.

Зависимость I от q при заданном значении r, в полярных координатах называется диаграммой направленности излучения диполя. диполь сильнее всего излучает в направлениях, перпендикулярных его оси (q=p/2). Вдоль своей оси (q=0 и q=p) диполь не излучает вообще. Диаграмма направленности излучения диполя позволяет формировать излучение с определенными характеристиками и используется при конструировании антенн.

Впервые электромагнитные волны были использованы через семь лет после опытов Герца. 7 мая 1895 г. преподаватель физики офицерских минных классов А.С.Попов (1859—1906) на заседании Русского физико-химического общества продемонстрировал первый в мире радиоприемник, открывший возможность практического использования электромагнитных волн для беспроволочной связи, преобразившей жизнь человечества. Первая переданная в мире радиограмма содержала лишь два слова: «Генрих Герц». Изобретение радио Поповым сыграло огромную роль в деле распространения и развития теории Максвелла.

Электромагнитные волны сантиметрового и миллиметрового диапазонов, встречая на своем пути преграды, отражаются от них. Это явление лежит в основе радиолокации — обнаружения предметов (например, самолетов, кораблей и т. д.) на больших расстояниях и точного определения их положения. Помимо этого, методы

радиолокации используются для наблюдения прохождения и образования облаков, движения метеоритов в верхних слоях атмосферы и т. д.

Для электромагнитных волн характерно явление дифракции — огибания волнами различных препятствий. Именно благодаря дифракции радиоволн возможна устойчивая радиосвязь между удаленными пунктами, разделенными между собой выпуклостью Земли. Длинные волны (сотни и тысячи метров) применяются в фототелеграфии, короткие волны (несколько метров и меньше) применяются в телевидении для передачи изображений на небольшие расстояния (немногим больше пределов прямой видимости). Электромагнитные волны используются также в радиогеодезии для очень точного определения расстояний с помощью радиосигналов, в радиоастрономии для исследования радиоизлучения небесных тел и т. д. Полное описание применения электромагнитных волн дать практически невозможно, так как нет областей науки и техники, где бы они не использовались.


 

А также другие работы, которые могут Вас заинтересовать

28494. Протипожежний режим у навчальному закладі 17.33 KB
  Протипожежний режим у навчальному закладі Основними системами комплексу заходів та засобів щодо забезпечення пожежної безпеки обєкта є: система запобігання пожежі; система протипожежного захисту; система організаційнотехнічних заходів. Система запобігання пожежі це комплекс організаційних заходів і технічних засобів спрямованих на унеможливлення умов необхідних для виникнення пожежі. Умови необхідні для виникнення пожежі горіння. Одним із основних принципів у системі запобігання пожежі є положення про те що горіння пожежа...
28501. Типи вогнегасників, які використовуються в закладах освіти 21.13 KB
  Типи вогнегасників Вогнегасники розрізняють за способом спрацьовування: автоматичні стаціонарно монтуються в місцях можливого виникнення вогню. У залежності від акумуляторної вогнегасної речовини вогнегасники поділяються на п'ять видів: вуглекислотні повітрянопінні порошкові водні аерозольні. Вогнегасники маркуються буквами що характеризують вид вогнегасника і цифрами що позначають його місткість. Вогнегасники технічні пристрої призначені для гасіння пожеж в початковій стадії їх виникнення.