6972

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга

Доклад

Физика

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга. Электромагнитные волны переносят энергию из одной точки пространства в другую за конечное время из-за конечности скорости распростран...

Русский

2013-01-11

31.2 KB

70 чел.

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга.

Электромагнитные волны переносят энергию из одной точки пространства в другую за конечное время из-за конечности скорости распространения электромагнитной волны, равной, скорости света в той среде, где она распространяется.

Энергия W электромагнитной волны внутри некоторого объёма V определяется плотностью энергии w электромагнитного поля волны в соответствии с выражением:

     (1)

Рассмотрим определение плотности энергии электромагнитной волны.

Пусть среда, в которой распространяется электромагнитная волна, не является ферромагнетиком или сегнетоэлектриком, неподвижна и не обладает проводимостью (σ=0). В этом случае можно считать равными нулю токи проводимости, поскольку в соответствии с законом Ома эти токи пропорциональны проводимости: . Вследствие этого нет расхода части энергии электромагнитной волны на увеличение внутренней энергии среды распространения волны из-за выделения Джоулева тепла.

В частном случае однородных сред распространения в соответствии с материальными уравнениями  и  объёмная плотность энергии электромагнитной волны может быть рассчитана по формуле

  (2)

Или в другом виде

   (3)

Исходя из этих выражений, получим для объёмной плотности энергии плоской гармонической волны:

    (4)

Где wE - объёмная плотность энергии электрического поля, равная

(5)

wH - объёмная плотность энергии магнитного поля , равная

(6)

Используя соотношения между амплитудами и фазами векторов напряжённости электрического и магнитного полей плоской гармонической электромагнитной волны, получаем, что

     (7)

В этом случае

   (8)

Отсюда следует вывод, что энергия электромагнитной волны делится поровну между её электрической и магнитной составляющими.

Поскольку  скорость распространения электромагнитной волны, из (8) следует, что произведение плотности её энергии на скорость

    (9)

определяет физическую величину, называемую плотностью потока энергии S, переносимой плоской электромагнитной волной.

Если известна плотность потока энергии S электромагнитной волны, то из (9) можно найти плотность энергии

  (10)

Плотность потока энергии S на самом деле, является векторной величиной, величина которой определяется мгновенным значением плотности энергии ,а направление - направлением распространения волны.

Вектор плотности потока электромагнитной энергии. Теорема Умова-Пойнтинга.

Рассмотрим закон сохранения энергии при распространении электромагнитных волн. Преобразуем систему уравнений Максвелла для чего первое уравнение  умножим на E, а второе  на H и после этого вычтем из первого преобразованного уравнения второе. В результате получим:

Заметим, что

в соответствии с (8) определяет скорость изменения плотности энергии электромагнитной волны w.

Если использовать векторное тождество

 (11)

и ввести вектор

    (12)

называемый вектором Пойтинга, получаем уравнение, представляющее собой не что иное как баланс энергии, переносимой электромагнитной волной

    (13)

Рассмотрим физический смысл вектора Пойнтинга, исходя из аналогии уравнению непрерывности тока

    (14)

в котором ρ - плотность электрического заряда, а j - плотность тока.

Формальная аналогия уравнений (13) и (14) приводит к представлению, что энергия течет подобно жидкости, электрическому току, причем вектор Пойтинга играет роль вектора плотности потока энергии. Иными словами, модуль вектора S равен энергии, переносимой электромагнитным полем за единицу времени через единичную площадку, ориентированную перпендикулярно направлению распространения поля, указываемому направлением вектора S.

Чтобы в этом убедиться, рассмотрим интегральную форму (13). После интегрирования этого соотношения по объёму и применения теоремы Остроградского-Гаусса получается теорема Умова - Пойнтинга:

  (15)

где V - произвольный объём среды распространения электромагнитных волн, ограниченный некоторой поверхностью F;  - внешняя нормаль к поверхности F (рис.1.); w - плотность энергии электромагнитного поля; SN - проекция вектора Пойтинга на направление нормали к поверхности F.

Рис. 1.

Соотношение (15) является одной из форм закона сохранения энергии, связанной с переносом излучения и называется теоремой Умова- Пойнтинга. Правая часть этого выражения представляет собой скорость изменения энергии в объёме распространения электромагнитного поля, а левая часть этого выражения оценивает поток энергии через поверхность, ограничивающую рассматриваемый объём. Иными словами, изменение энергии внутри объёма V происходит за счет притока/оттока электромагнитной энергии через поверхность F, ограничивающей объём.

Выведенная теорема остаётся справедливой и при учете свойств теплопроводности, а также упругости среды, но к плотности потока электромагнитной энергии следует добавить дополнительные слагаемые, ответственные за плотность потока тепловой и упругой энергии.

Общее представление о потоке энергии в пространстве было введено в физику Н. А. Умовым в 1874г. Пойнтинг получил формулу для расчета потока электромагнитной энергии на одиннадцать лет позднее Н. А. Умова, не рассматривавшего расчёты потока энергии электромагнитного поля.

Из соотношения (15) следует, что уравнение энергетического баланса, используемое для определения вектора Пойнтинга по формуле (12), будет выполнено, если к вектору Пойнтинга прибавить ротор произвольного вектора (). Отсюда следует неоднозначность определения вектора Пойнтинга из уравнения (15). Однако, в круге рассматриваемых физических задач это обстоятельство не приводит к каким-либо недоразумениям.



 

А также другие работы, которые могут Вас заинтересовать

2039. Вплив наркотиків і токсинів на самопочуття людини 38.5 KB
  Мета: сформувати уявлення про наркоманію як найбільш небезпечне соціальне явище, причини наркоманії та її профілактику.
2040. Нумо, хлопці! Виховний захід 40.5 KB
  Мета заходу: привітати хлопців із днем захисника Вітчизни, навчити бачити позитивні якості у кожній людині, розвивати художній смак, удосконалювати навички декламування.
2041. Урок-захід. У дружбі жити – не тужити 23.58 KB
  Мета: формувати уявлення дітей про дружбу і товаришування, вчити оцінювати свої вчинки і вчинки оточуючих людей, розвивати вміння аналізувати, робити висновки, виховувати дружелюбність, бажання бути другом.
2042. Бенкет-кава: особливості меню, сервірування, обслуговування 18.16 KB
  Бенкет-чай організовують у затишних невеликих залах, у яких встановлюють круглі й овальні столи, а якщо їх немає, то столи квадратної або прямокутної форми, стільці, крісла, напівкрісла, а іноді й дивани.
2043. Бенкет-фуршет: особливості сервірування та обслуговування 26 KB
  Для сервування столу використовують столовий посуд і набори, загальна кількість яких залежить від чисельності гостей і нормативу на одного гостя.
2044. Обслуговування учасників конференцій, фестивалів, форумів 18.01 KB
  Учасники вказаних заходів обслуговуються харчуванням за місцем роботи і проживання. У перервах між засіданнями може працювати буфет-фуршет, організований за місцем проведення засідання.
2045. Призначення санітарно-технічної та інженерно-технічної служб 38.03 KB
  Основним призначенням санітарно-технічної та інженерно-технічної служб підприємства готельного господарства є створення та підтримка умов для безперервного функціонування будівель та обладнання готельного підприємства, своєчасне проведення всіх видів ремонту та профілактичних заходів з метою запобігання збоїв у роботі всіх служб підприємства.
2046. Вимоги до коридорів, холів, їх оформлення 25.76 KB
  Основною вимогою до коридорів є відсутність будь-яких меблів і денне та штучне освітлення, що сприяє швидкому орієнтуванню у них споживачів готельних послуг.
2047. Кондиціонування. Ліфти 24.33 KB
  Вентиляція приміщень (провітрювання) є природною і функціонує за рахунок проникнення в приміщення повітря через відкриті вікна, кватирки, щілини в конструкціях будинків і щілі будівельних матеріалів.