6972

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга

Доклад

Физика

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга. Электромагнитные волны переносят энергию из одной точки пространства в другую за конечное время из-за конечности скорости распростран...

Русский

2013-01-11

31.2 KB

70 чел.

Энергия электромагнитного поля. Плотность энергии ЭМ поля. Плотность потока энергии ЭМ поля. Вектор Умова-Пойтинга.

Электромагнитные волны переносят энергию из одной точки пространства в другую за конечное время из-за конечности скорости распространения электромагнитной волны, равной, скорости света в той среде, где она распространяется.

Энергия W электромагнитной волны внутри некоторого объёма V определяется плотностью энергии w электромагнитного поля волны в соответствии с выражением:

     (1)

Рассмотрим определение плотности энергии электромагнитной волны.

Пусть среда, в которой распространяется электромагнитная волна, не является ферромагнетиком или сегнетоэлектриком, неподвижна и не обладает проводимостью (σ=0). В этом случае можно считать равными нулю токи проводимости, поскольку в соответствии с законом Ома эти токи пропорциональны проводимости: . Вследствие этого нет расхода части энергии электромагнитной волны на увеличение внутренней энергии среды распространения волны из-за выделения Джоулева тепла.

В частном случае однородных сред распространения в соответствии с материальными уравнениями  и  объёмная плотность энергии электромагнитной волны может быть рассчитана по формуле

  (2)

Или в другом виде

   (3)

Исходя из этих выражений, получим для объёмной плотности энергии плоской гармонической волны:

    (4)

Где wE - объёмная плотность энергии электрического поля, равная

(5)

wH - объёмная плотность энергии магнитного поля , равная

(6)

Используя соотношения между амплитудами и фазами векторов напряжённости электрического и магнитного полей плоской гармонической электромагнитной волны, получаем, что

     (7)

В этом случае

   (8)

Отсюда следует вывод, что энергия электромагнитной волны делится поровну между её электрической и магнитной составляющими.

Поскольку  скорость распространения электромагнитной волны, из (8) следует, что произведение плотности её энергии на скорость

    (9)

определяет физическую величину, называемую плотностью потока энергии S, переносимой плоской электромагнитной волной.

Если известна плотность потока энергии S электромагнитной волны, то из (9) можно найти плотность энергии

  (10)

Плотность потока энергии S на самом деле, является векторной величиной, величина которой определяется мгновенным значением плотности энергии ,а направление - направлением распространения волны.

Вектор плотности потока электромагнитной энергии. Теорема Умова-Пойнтинга.

Рассмотрим закон сохранения энергии при распространении электромагнитных волн. Преобразуем систему уравнений Максвелла для чего первое уравнение  умножим на E, а второе  на H и после этого вычтем из первого преобразованного уравнения второе. В результате получим:

Заметим, что

в соответствии с (8) определяет скорость изменения плотности энергии электромагнитной волны w.

Если использовать векторное тождество

 (11)

и ввести вектор

    (12)

называемый вектором Пойтинга, получаем уравнение, представляющее собой не что иное как баланс энергии, переносимой электромагнитной волной

    (13)

Рассмотрим физический смысл вектора Пойнтинга, исходя из аналогии уравнению непрерывности тока

    (14)

в котором ρ - плотность электрического заряда, а j - плотность тока.

Формальная аналогия уравнений (13) и (14) приводит к представлению, что энергия течет подобно жидкости, электрическому току, причем вектор Пойтинга играет роль вектора плотности потока энергии. Иными словами, модуль вектора S равен энергии, переносимой электромагнитным полем за единицу времени через единичную площадку, ориентированную перпендикулярно направлению распространения поля, указываемому направлением вектора S.

Чтобы в этом убедиться, рассмотрим интегральную форму (13). После интегрирования этого соотношения по объёму и применения теоремы Остроградского-Гаусса получается теорема Умова - Пойнтинга:

  (15)

где V - произвольный объём среды распространения электромагнитных волн, ограниченный некоторой поверхностью F;  - внешняя нормаль к поверхности F (рис.1.); w - плотность энергии электромагнитного поля; SN - проекция вектора Пойтинга на направление нормали к поверхности F.

Рис. 1.

Соотношение (15) является одной из форм закона сохранения энергии, связанной с переносом излучения и называется теоремой Умова- Пойнтинга. Правая часть этого выражения представляет собой скорость изменения энергии в объёме распространения электромагнитного поля, а левая часть этого выражения оценивает поток энергии через поверхность, ограничивающую рассматриваемый объём. Иными словами, изменение энергии внутри объёма V происходит за счет притока/оттока электромагнитной энергии через поверхность F, ограничивающей объём.

Выведенная теорема остаётся справедливой и при учете свойств теплопроводности, а также упругости среды, но к плотности потока электромагнитной энергии следует добавить дополнительные слагаемые, ответственные за плотность потока тепловой и упругой энергии.

Общее представление о потоке энергии в пространстве было введено в физику Н. А. Умовым в 1874г. Пойнтинг получил формулу для расчета потока электромагнитной энергии на одиннадцать лет позднее Н. А. Умова, не рассматривавшего расчёты потока энергии электромагнитного поля.

Из соотношения (15) следует, что уравнение энергетического баланса, используемое для определения вектора Пойнтинга по формуле (12), будет выполнено, если к вектору Пойнтинга прибавить ротор произвольного вектора (). Отсюда следует неоднозначность определения вектора Пойнтинга из уравнения (15). Однако, в круге рассматриваемых физических задач это обстоятельство не приводит к каким-либо недоразумениям.



 

А также другие работы, которые могут Вас заинтересовать

22592. Права та форми власності на землю 64 KB
  Земля в Україні може перебувати у приватній комунальній та державній власності. Суб'єкти права власності на землю. а громадяни та юридичні особи на землі приватної власності; б територіальні громади які реалізують це право безпосередньо або через органи місцевого самоврядуванні на землі комунальної власності; в держава яка реалізує це право через відповідні органи державної влади на землі державної власності.
22593. Цивільне - правові угоди та договори 33.93 KB
  Угоди укладають як юридичні так і фізичні особи. Угоди бувають односторонніми для виникнення такої угоди достатньо волевиявлення однієї сторони; двосторонніми для виникнення угоди необхідні зустрічні волевиявлення двох сторін; багатосторонніми для їх виникнення необхідне волевиявлення трьох і більше сторін. Деякі угоди можуть бути як платними такі безоплатними наприклад договір схову.
22594. Договір найму жилого приміщення 30.71 KB
  Договір найму жилого приміщення в будинках що належать громадянам на правах особистої власності укладається з власником будинку. Предметом договору найму жилого приміщення в будинках державного і громадського житлового фонду є окрема квартира чи інше ізольоване житлове приміщення а також одноквартирний жилий будинок. Не можуть бути самостійним предметом договору найму: жиле приміщення яке хоча і є ізольованим але розмір якого менший від установленого для надання одній особі; частина кімнати або кімнат з'єднаних з іншою кімнатою...
22595. Контролер локальних дисків 63.5 KB
  Програмування контролера НГМД 765 і мікросхеми прямого доступу до пам'яті 8237. Мікросхема контролера НГМД 765 фірми NEC управляє мотором і головками накопичувача на дискетах і обробляє потоки даних що направляються в або з дискових секторів. Один контролер встановлений на платі адаптора дисків може обслуговувати до чотирьох НГМД. За винятком випадків пов'язаних із захистом від копіювання програмістам не доводиться програмувати мікросхему контролера НГМД напряму.
22596. Імітаційна модель процесора 97.5 KB
  Команда як послідовність деяких дій над даними виконується по тактам мікропрограма команди. Команда має вигляд: Код команди 1й операнд 2й операнд . Найчастіше результат команди заноситься за місцем першого операнда. Формат операндів закладається у формат команди.
22597. Визначення швидкодії обчислювальної системи 80 KB
  2; текстові операції 0.2; файлові операції 0.35; операції сортування 0.15; текстові операції 0.
22598. Робота з регістрами CMOS-memory 45.5 KB
  Приведемо тут тільки короткі зведення: Номер регістра Використання 10H тип накопичувача НГМД 12H тип накопичувача фіксованого диска 14H периферія 15H пам'ять на системній платі молодший байт 16H пам'ять на системній платі старший байт 17H загальна пам'ять молодший байт 18H загальна пам'ять старший байт 30H пам'ять понад 1 мегабайту молодший байт 31H пам'ять понад 1 мегабайту старший байт Кожний з трьох каналів мікросхеми таймера 8253 8254 для AT складається з трьох регістрів. Доступ до кожної групи з трьох регістрів здійснюється...
22599. Контроль клавіатурного вводу 32 KB
  Скенкод це однобайтне число молодші 7 бітів якого представляють ідентифікаційний номер призначений кожній клавіші. На всіх машинах крім AT старший біт коду говорить про те чи була клавіша натиснута біт = 1 код натискання або відпущена біт = 0 код звільнення. Наприклад 7бітный скенкод клавіші В 48 або 110000 в двійковій системі.
22600. Управління відеоадаптером IBM PC 35.5 KB
  Однак вона також встановлює режим екрана управляє курсором і для кольорового графічного адаптора управляє кольором. Розмір і розташування цих буферів міняється з системою режимом екрана а також кількістю заздалегідь відведеної пам'яті. Коли в буфері зберігається декілька образів екрана то кожний окремий образ називають екранною сторінкою. Цього досить для відображення одного графічного екрана без сторінок або від чотирьох до восьми екранів тексту в залежності від числа символів в рядку 40 або 80.