69758

Технології передавання повідомлень

Лекция

Информатика, кибернетика и программирование

Сокет це абстрактна кінцева точка з’єднання через яку процес може відсилати або отримувати повідомлення. Під час обміну даними із використанням сокетів зазвичай застосовується технологія клієнтсервер коли один процес сервер очікує з’єднання а інший клієнт з’єднують із ним.

Украинкский

2014-10-09

38 KB

1 чел.

Тема 6. Технології передавання повідомлень.

Розглянемо методи передавання повідомлень, які застосовують на практиці.

Канали

Канал — це найпростіший засіб передавання повідомлень. Він є циклічним буфером, записування у який виконують за допомогою одного процесу, а читання - за допомогою іншого. У конкретний момент часу до каналу має доступ тільки один процес. Операційна система забезпечує синхронізацію згідно правилу: якщо процес намагається записувати в канал, у якому немає місця, або намагається зчитати більше даних, ніж поміщено в канал, він переходить у стан очікування.

Розрізняють безіменні та поіменовані канали.

До безіменних каналів немає доступу за допомогою засобів іменування, тому процес не може відкрити вже наявний безіменний канал без його дескриптора. Це означає, що такий процес має отримати дескриптор каналу від процесу, що його створив, а це можливо тільки для зв'язаних процесів.

До поіменованих каналів (named pipes) є доступ за іменем. Такому каналу може відповідати, наприклад, файл у файловій системі, при цьому будь-який процес, який має доступ до цього файла, може обмінюватися даними через відповідний канал. Поіменовані канали реалізують непрямий обмін даними.

Обмін даними через канал може бути однобічним і двобічним.

Приклади використання поіменованих каналів будуть наведені в розділі 11, безіменних — у розділі 17.

Черги повідомлень

Іншою технологією асинхронного непрямого обміну даними є застосування черг повідомлень (message queues) [37, 52]. Для таких черг виділяють спеціальне місце в системній ділянці пам'яті ОС, доступне для застосувань користувача. Процеси можуть створювати нові черги, відсилати повідомлення в конкретну чергу й отримувати їх звідти. Із чергою одночасно може працювати кілька процесів. Повідомлення - це структури даних змінної довжини. Для того щоб процеси могли розрізняти адресовані їм повідомлення, кожному з них присвоюють тип. Відіслане повідомлення залишається в черзі доти, поки не буде зчитане. Синхронізація під час роботи з чергами схожа на синхронізацію для каналів.

Сокети

Найрозповсюдженішим методом обміну повідомленнями є використання сокетів (sockets). Ця технологія насамперед призначена для організації мережного обміну даними, але може бути використана й для взаємодії між процесами на одному комп'ютері (власне, мережну взаємодію можна розуміти як узагальнення IPC).

Сокет — це абстрактна кінцева точка з'єднання, через яку процес може відсилати або отримувати повідомлення. Обмін даними між двома процесами здійснюють через пару сокетів, по одному на кожен процес. Абстрактність сокету полягає в тому, що він приховує особливості реалізації передавання повідомлень — після того як сокет створений, робота з ним не залежить від технології передавання даних, тому один і той самий код можна без великих змін використовувати для роботи із різними протоколами зв'язку.

Особливості протоколу передавання даних і формування адреси сокету визначає комунікаційний домен; його потрібно зазначати під час створення кожного сокету. Прикладами доменів можуть бути домен Інтернету (який задає протокол зв'язку на базі TCP/IP) і локальний домен або домен UNIX, що реалізує зв'язок із використанням імені файла (подібно до поіменованого каналу). Сокет можна використовувати у поєднанні тільки з одним комунікаційним доменом. Адреса сокету залежить від домену (наприклад, для сокетів домену UNIX такою адресою буде ім'я файла).

Способи передавання даних через сокет визначаються його типом. У конкретному домені можуть підтримуватися або не підтримуватися різні типи сокетів.

Наприклад, і для домену Інтернет, і для домену UNIX підтримуються сокети таких типів:

потокові (stream sockets) — задають надійний двобічний обмін даними суцільним потоком без виділення меж (операція читання даних повертає стільки даних, скільки запитано або скільки було на цей момент передано);

дейтаграмні (datagram sockets) — задають ненадійний двобічний обмін повідомленнями із виділенням меж (операція читання даних повертає розмір того повідомлення, яке було відіслано).

Під час обміну даними із використанням сокетів зазвичай застосовується технологія клієнт-сервер, коли один процес (сервер) очікує з'єднання, а інший (клієнт) з'єднують із ним.

Перед тим як почати працювати з сокетами, будь-який процес (і клієнт, і сервер) має створити сокет за допомогою системного виклику socket (). Параметрами цього виклику задають комунікаційний домен і тип сокету. Цей виклик повертає дескриптор сокету — унікальне значення, за яким можна буде звертатися до цього сокету.

Подальші дії відрізняються для сервера і клієнта. Спочатку розглянемо послідовність кроків, яку потрібно виконати для сервера.

Сокет пов'язують з адресою за допомогою системного виклику bind(). Для сокетів домену UNIX як адресу задають ім'я файла, для сокетів домену Інтерне-ту - необхідні характеристики мережного з'єднання. Далі клієнт для встановлення з'єднання й обміну повідомленнями має буде вказати цю адресу.

Сервер дає змогу клієнтам встановлювати з'єднання, виконавши системний виклик listen() для дескриптора сокету, створеного раніше.

Після виходу із системного виклику 1іsten() сервер готовий приймати від клієнтів запити на з'єднання. Ці запити вишиковуються в чергу. Для отримання запиту із цієї черги і створення з'єднання використовують системний виклик accept(). Внаслідок його виконання в застосування повертають новий сокет для обміну даними із клієнтом. Старий сокет можна використовувати далі для приймання нових запитів на з'єднання. Якщо під час виклику accept () запити на з'єднання в черзі відсутні, сервер переходить у стан очікування.

Для клієнта послідовність дій після створення сокету зовсім інша. Замість трьох кроків досить виконати один — встановити з'єднання із використанням системного виклику connect(). Параметрами цього виклику задають дескриптор створеного раніше сокету, а також адресу, подібну до вказаної на сервері для виклику bind ().

Після встановлення з'єднання (і на клієнті, і на сервері) з'явиться можливість передавати і приймати дані з використанням цього з'єднання. Для передавання даних застосовують системний виклик send(), а для приймання — recv().

Зазначену послідовність кроків використовують для встановлення надійного з'єднання. Якщо все, що нам потрібно, - це відіслати і прийняти конкретне повідомлення фіксованої довжини, то з'єднання можна й не створювати зовсім. Для цього як відправник, так і одержувач повідомлення мають попередньо зв'язати сокети з адресами через виклик bind(). Потім можна скористатися викликами прямого передавання даних: sendto() - для відправника і recvfromO - для одержувача. Параметрами цих викликів задають адреси одержувача і відправника, а також адреси буферів для даних.

Докладніше використання сокетів буде описано в розділі 16.

Віддалений виклик процедур

Технологія віддаленого виклику процедур (Remote Procedure Call, RPC) [37, 50, 52, 57] є прикладом синхронного обміну повідомленнями із підтвердженням отримання. Розглянемо послідовність кроків, необхідних для обміну даними в цьому разі.

Операцію send оформляють як виклик процедури із параметрами.

Після виклику такої процедури відправник переходить у стан очікування, а дані (ім'я процедури і параметри) доставляються одержувачеві. Одержувач може перебувати на тому самому комп'ютері, чи на віддаленій машині; технологія RPC приховує це. Класичний віддалений виклик процедур передбачає, що процес-одержувач створено внаслідок запиту.

Одержувач виконує операцію гесеі ve і на підставі даних, що надійшли, виконує відповідні дії (викликає локальну процедуру за іменем, передає їй параметри і обчислює результат).

Обчислений результат повертають відправникові як окреме повідомлення.

Після отримання цього повідомлення відправник продовжує своє виконання, розглядаючи обчислений результат як наслідок виклику процедури.

Приклади використання віддаленого виклику процедур будуть нами розглянуті в розділі 20.

Контрольні питання:

1. Технології передавання повідомлень.

2. Канали.

3. Черги повідомлень.

4. Сокети.

5. Типи сокетів.

6. Віддалений виклик процедур.


 

А также другие работы, которые могут Вас заинтересовать

42594. Основи програмування 69.5 KB
  На формі знаходится одна група залежних та одна група незалежних перемикачів. В групі залежних перемикачів знаходяться три значення: іспит, залік, курсовий проект. В іншій групі знаходяться назви дисциплін поточного семестру. При виборі користувачем одного з значень залежних перемикачів (іспит чи залік) встановити прапорці біля відповідних дисциплін.
42595. Метод измерения Рн прибором п-201 40.5 KB
  Цель работы: ознакомится с принципом действия и устройством промышленного Рнметра выполнить проверку ознакомится с устройством имитатора электронной системы. Схема собранная на преобразователе П201 назначение приборов П201 преобразовает сигнал с электродов Rt –замеряет температуру среды И02 иммитаор для проверки преобразователя М325 Рнметр предел измерений от 2 до12 МСР63 блок сопротивлений Соединительная схема протокол поверки: порядок работы проверку проверку производят при нормальных условиях T20C влажность...
42596. Геометрии токарных резцов 175.5 KB
  Наименование резца: А тип резца – проходной Б расположение главной режущей кромки – правый В форма и расположение головки резца – прямой Г способ крепления режущей части – напайной 2 Наименование резца: А тип резца – подрезной Б расположение главной режущей кромки – правый В форма и расположение головки резца – отогнутый Г способ крепления режущей части – напайной Результаты измерений Измеряемые элементы Обозначение Величина ВК81 ВК8 Главный передний угол γ 750 20 Передний угол фаски γ _ _ Главный задний угол α 130 1650 Угол...
42597. Методологія розробки програмних продуктів та великих програмних систем 333.5 KB
  2010 18:00 77 Общий сбор scrum meeting 71.2010 9:00 78 Общий сбор scrum meeting 1 .2010 9:00 79 Общий сбор scrum meeting 2 .2010 9:00 80 Общий сбор scrum meeting 3 .
42598. Метод измерения Рн-прибором п-201с применением измерительных электродов 37 KB
  Березниковский филиал Пермского Государственного Технического Университета лабораторная работа №3 По курсу: методика автоматического анализа Тема: метод измерения Рнприбором п201с применением измерительных электродов Выполнил: студент гр. Цель работы: произвести измерение с помощью электродов сравнить данные с приборов с истинным значением сделать вывод. назначение приборов П201 преобразовывает сигнал с электродов Rt –замеряет температуру среды М325...
42599. Изучение конструкции и геометрических параметров спиральных сверл 517 KB
  Угол наклона винтовой канавки а расчетный б по отпечатку в по угломеру ЛМТ ω1 ω2 ω3 280 270 270 9. Угол при вершине сверла Угол при режущей кромки 1 Угол при режущей кромки 2 2φ φ1 φ2 3440 34020’ 34020’ 11. Угол наклона поперечной режущей кромки: по угломеру ψ 5310 13. Главный задний угол в осевой плоскости: rx=09r rx=04r 108 48 16.
42600. ФИЗИОЛОГИЯ СОСУДИСТОЙ СИСТЕМЫ. КРОВЯНОЕ ДАВЛЕНИЕ И ПУЛЬС 220.37 KB
  Кровяное давление как основной показатель гемодинамики. Факторы, обуславливающие величину артериального и венозного давления. Методы исследования. Артериальный и венный пульс, их происхождение. Анализ сфигмограммы и флебограммы.
42601. Конструктивные элементы и геометрические параметры фрез 150.5 KB
  Фреза — инструмент с несколькими режущими лезвиями (зубьями) для фрезерования. Виды фрез по геометрии(исполнению) бывают — цилиндрические, торцевые, червячные, концевые, конические и др. Виды фрез по обрабатываемому материалу - дерево,сталь, чугун, нержавеющая сталь, закаленная сталь, медь, алюминий, графит. Материал режущей части — быстрорежущая сталь, твёрдый сплав, минералокерамика, металокерамика или алмаз, массив кардной проволоки.
42602. Классификация токарных резцов 82 KB
  Характеристика резцов Материал режущей части Назначение Форма и расположения головки Направления подачи Конструкция Характер обработки Форма передней поверхности 1 ВК 6 Проходной прямой левый Прямая Левое Напайная Черновая Плоская с положительным передним углом 2 ВК 8 Подрезной торцевой левый Прямая Левое Напайная Черновая Плоская с положительным передним углом 3 ВК 8 Подрезной торцевой левый Отогнутая Левое Напайная Черновая Плоская с положительным передним углом 4 Проходной прямой левый Отогнутая Правое Цельная Черновая Плоская с...