70102

Многомерная безусловная оптимизация (методы первого и нулевого порядков)

Лабораторная работа

Информатика, кибернетика и программирование

Цель работа: знакомство с методами многомерной безусловной оптимизации первого и нулевого порядка и их освоение, сравнение эффективности применения этих методов конкретных целевых функций.

Русский

2014-10-15

373 KB

13 чел.

Лабораторная работа № 2

Тема: Многомерная безусловная оптимизация (методы первого и нулевого порядков).

Цель работа: знакомство с методами многомерной безусловной оптимизации первого и нулевого порядка и их освоение, сравнение эффективности применения этих методов конкретных целевых функций.

  1.  Краткие теоретические сведения.

  1.  О  численных методах многомерной оптимизации.

Задача многомерной безусловной оптимизации формулируется в виде:

                                       min f(x),

                                        xX 

где x={x(1), x(2),…, x(n)} – точка в n-мерном пространстве X=IRn, то есть целевая функция f(x)=f(x(1),…,f(x(n)) – функция n аргументов.

Так же как и в первой лабораторной работе мы рассматриваем задачу минимизации. Численные методы отыскания минимума, как правило, состоят в построении последовательности точек {xk}, удовлетворяющих условию f(x0)>f(x1)>…>f(xn)>… . Методы построения таких последовательностей называются методами спуска. В этих методах точки последовательности {xk} вычисляются по формуле:   

хk+1 = xk + kpk, k=0,1,2,… ,   

где pk – направление спуска, k – длина шага в этом направлении.

Различные методы спуска отличаются друг от друга способами выбора направления спуска pk и длины шага k вдоль этого направления. Алгоритмы безусловной минимизации принято делить на классы, в зависимости от максимального порядка производных минимизируемой функции, вычисление которых предполагается. Так, методы, использующие только значения самой целевой функции, относят к методам нулевого порядка (иногда их называют также методами прямого поиска); если, кроме того, требуется вычисление первых производных минимизируемой функции, то мы имеем дело с методами первого порядка; если же дополнительно используются вторые производные, то это методы второго порядка и т. д.

1.2. Градиентные методы.

1.2.1. Общая схема градиентного спуска.

Как известно, градиент функции в некоторой точке xk направлен в сторону наискорейшего локального возрастания функции и перпендикулярен линии уровня (поверхность постоянного значения функции f(x), проходящей через точку xk). Вектор, противоположный градиенту , называется антиградиентом, который направлен в сторону наискорейшего убывания функции f(x). Выбирая в качестве направления спуска pk антиградиент -     в точке xk, мы приходим к итерационному процессу вида:

xk+1 = xk - k f’(xk), k>0, k=0,1,2,… .

В координатной форме этот процесс записывается следующим образом:

 Все итерационные процессы, в которых направление движения на каждом шаге совпадает с антиградиентом функции, называются градиентными методами. Они отличаются друг от друга только способом выбора шага k. Существует много различных способов выбора k, но наиболее распространены: метод с постоянным шагом, метод с дроблением шага и метод наискорейшего спуска.

1.2.2. Градиентный метод с постоянным шагом.

Основная проблема в градиентных методах – это выбор шага k. Достаточно малый шаг k обеспечивает убывание функции, то есть выполнение неравенства:

                                f(xk - k( xk))) < f(xk),

но может привести к неприемлемо большому количеству итераций, необходимых для достижения точки минимума. С другой стороны, слишком большой шаг может вызвать неожиданный рост функции (невыполнение условия убывания) либо привести к колебаниям около точки минимума. Однако проверка условия убывания на каждой итерации является довольно трудоемкой, поэтому в методе градиентного спуска с постоянным шагом задают =k постоянным и достаточно малым, чтобы можно было использовать этот шаг на любой итерации. При этом приходится мириться с возможно большим количеством итераций. Утешением является лишь то, что трудоемкость каждой итерации, в этом случае, минимальна (нужно вычислять только градиент ).

Схема алгоритма

Шаг 1.

Задаются начальное приближение х0, постоянный шаг , условия останова алгоритма 3. Вычисляется значение градиента  – направление поиска. Присваивается к=0.

Шаг 2.

Определяется точка очередного эксперимента:

             хк+1 = хк - f’(xk),

или, в координатной форме:

Шаг 3.

Вычисляется значение градиента в точке хк+1:

                    ,

или, в координатной форме:

Шаг 4.

Если ||||3, то поиск заканчивается, при этом:

Иначе к=к+1 и переходим к шагу 2.

1.2.3. Градиентный метод с дроблением шага.

В методе градиентного спуска с дроблением шага величина шага к выбирается так, чтобы было выполнено неравенство:

                             f(xk-k)-f(xk)-k||||2,

             где 0<<1 – произвольно выбранная постоянная (одна и та же для всех итераций). Это требование на выбор шага к более жесткое, чем условие убывания, но имеет тот же смысл: функция должна убывать от итерации к итерации. Однако при выполнении неравенства функция будет уменьшаться на гарантированную величину, определяемую правой частью неравенства.

Процесс выбора шага протекает следующим образом. Выбираем число >0, одно и то же для всех итераций. На к-й итерации проверяем выполнение неравенства при к=. Если оно выполнено, полагаем к= и переходим к следующей итерации. Если нет, то шаг к дробим, например уменьшаем каждый раз в два раза, до тех пор, пока оно не выполнится.

Схема алгоритма

Шаг 1.

Задаются х0, 3, и начальное значение шага . Вычисляется значение градиента  – направление поиска. Присваивается к=0.

Шаг 2.

Проверяется условие: f(xk-)-f(xk) -||||2. Если выполняется, то переходим к шагу 3, иначе дробим значение (=/2) и повторяем шаг 2.

Шаг 3.

Определяется точка очередного эксперимента:    хк+1 = хк - .

Шаг 4.

Вычисляется значение градиента в точке хк+1: .

Шаг 5.

Если ||||3, то поиск заканчивается, при этом:

           Иначе к=к+1 и переходим к шагу 2.

1.2.4. Метод наискорейшего спуска.

В градиентном методе с постоянным шагом величина шага, обеспечивающая убывание функции f(x) от итерации к итерации, оказывается очень малой, что приводит к необходимости проводить большое количество итерации для достижения точки минимума. Поэтому методы спуска с переменным шагом являются более экономными. Алгоритм, на каждой итерации которого шаг к выбирается из условия минимума функции f(x) в направлении движения, то есть:

называется методом наискорейшего спуска. Разумеется, этот способ выбора к сложнее ранее рассмотренных вариантов.

Реализация метода наискорейшего спуска предполагает решение на каждой итерации довольно трудоемкой вспомогательной задачи одномерной минимизации. Как правило, метод наискорейшего спуска, тем не менее, дает выигрыш в числе машинных операций, поскольку обеспечивает движение с самым выгодным шагом, ибо решение задачи одномерной минимизации связано с дополнительными вычислениями только самой функции f(x), тогда как основное машинное время тратится на вычисление ее градиента .

Следует иметь в виду, что одномерную минимизацию можно производить любым методом одномерной оптимизации, что порождает различные варианты метода наискорейшего спуска.

Схема алгоритма

Шаг 1.

Задаются х0, 3. Вычисляется градиент , направление поиска.    

          Присваивается к=0.

Шаг 2.

Определяется точка очередного эксперимента:

                                  хк+1 = хк - к,

              где к – минимум задачи одномерной минимизации:

Шаг 3.

Вычисляется значение градиента в точке хк+1: .

Шаг 4.

Если ||||3, то поиск точки минимума заканчивается и полагается:

            Иначе к=к+1 и переход к шагу 2.

1.3.Метод покоординатного спуска.

Желание уменьшить объем вычислительной работы, требуемой для осуществления одной итерации метода наискорейшего спуска, привело к созданию методов покоординатного спуска.

Пусть                - начальное приближение. Вычислим частную производную по первой координате и примем:

      где е1={1,0,…,0}T – единичный вектор оси х(1). Следующая итерация состоит в вычислении точки х2 по формуле:

           где е2={0,1,0,…,0}T – единичный вектор оси х(2) и т. д.

Таким образом, в методах координатного спуска мы спускаемся по ломанной, состоящей из отрезков прямых, параллельных координатным осям.

    

Спуск по всем координатам составляет одну «внешнюю» итерацию. Пусть к – номер очередной внешней итерации, а j – номер той координаты, по которой производится спуск. Тогда формула, определяющая следующее приближение к точке минимума, имеет вид:

                   где к=0,1,2,… ;  j=1,2,…n.

В координатной форме формула выглядит так:

После j=n счетчик числа внешних итераций к увеличивается на единицу, а j принимает значение равное единице.

Величина шага к выбирается на каждой итерации аналогично тому, как это делается в градиентных методах. Например, если к= постоянно, то имеем покоординатный спуск с постоянным шагом.

Схема алгоритма покоординатного спуска с постоянным шагом

Шаг 1.

При к=0 вводятся исходные данные х0, 1, .

Шаг 2.

Осуществляется циклический по j (j=1,2,…,n) покоординатный спуск из точки хkn по формуле:

Шаг 3.

Если ||x(k+1)nxkn||1, то поиск минимума заканчивается, причем:

Иначе к=к+1 и переходим к шагу 2.

Если же шаг к выбирается из условия минимума функции:

то мы получаем аналог метода наискорейшего спуска, называемый обычно методом Гаусса – Зейделя.

Схема метода Гаусса – Зейделя

Шаг 1.

При к=0 вводятся исходные данные х0, 1.

Шаг 2.

Осуществляется циклический по j (j=1,2,…,n) покоординатный спуск из  точки хkn по формулам:

     где kn+j-1 является решением задачи одномерной минимизации функции:

Шаг 3.

Если ||x(k+1)nxkn||1, то поиск минимума заканчивается, причем:

            Иначе к=к+1 и переходим к шагу 2.

1.4. Методы оврагов

1.4.1. Общая характеристика.

Градиентные методы медленно сходятся в тех случаях, когда поверхности уровня целевой функции f(x) сильно вытянуты. Этот факт известен в литературе как «эффект оврагов». Суть эффекта в том, что небольшие изменения одних переменных приводят к резкому изменению значений функции – эта группа переменных характеризует «склон оврага», а по остальным переменным, задающим направление «дно оврага», функция меняется незначительно. На рисунке изображены линии уровня «овражной» функции траектория градиентного метода характеризуется довольно быстрым спуском на «дно оврага», и затем медленным зигзагообразным движением в точку минимума.

 

Существуют различные подходы для определения точки минимума функции f(x) в овражной ситуации. Большинство из них основаны на эвристических (то есть интуитивных, не обоснованных строго) соображениях. Их можно применять в ситуациях, когда применение более совершенных методов невозможно или нецелесообразно, например, значение целевой функции вычисляется со значительными погрешностями, информация о ее свойствах недостаточна, и т. д. Эти методы просты в реализации и довольно часто применяются на практике, позволяя в ряде случаев получить удовлетворительное решение задачи.

1.4.2. Эвристические алгоритмы.

Иногда, используя градиентный спуск для минимизации функций со сложной топографической структурой, применяют эвристические схемы, которые идейно близки к методам спуска. Мы рассмотрим две такие схемы.

Первая эвристическая схема содержит два основных этапа. Оба этапа представляют собой аналоги градиентного спуска с постоянным шагом. Только вместо градиента   используется вектор g(x), формируемый из координат , но на каждом из этапов по разным правилам.

На первом этапе задается малое число 1<<1 и используется градиентный спуск, где вместо градиента  берется вектор g(x)={g(1)(x),…,g(n)(x)}, который определяется следующим образом:

 

Таким образом, спуск производится лишь по тем переменным, в направлении которых производная целевой функции достаточно велика. Это позволяет быстро спуститься на «дно оврага». Мы спускаемся до тех пор, пока метод не зациклится, то есть до тех пор, пока каждая следующая итерация позволяет найти точку, в которой значение функции меньше, чем значение, найденное в предыдущей итерации. После этого переходим к следующему этапу.

На втором этапе задается некоторое большое число 2>>1 и используется процедура спуска, где вместо градиента  берется вектор g(x)={g(1)(x),…,g(n)(x)}, который определяется следующим образом:

В этом случае перемещение происходит по «берегу» оврага вдоль его «дна». Как и на первом этапе, спуск продолжается до тех пор, пока метод не зациклится.

После выполнения первого и второго этапов принимается решение о завершении работы или продолжении. Для этого сравнивается норма разности предыдущей точки, то есть точки, которую мы имели до применения первого и второго этапов, с текущей точкой, то есть полученной после применения с точностью решения задачи 1. Если эта норма меньше 1 и норма градиента в текущей точке меньше 3, то поиск заканчивается и последняя вычисленная точка принимается за приближенное решение задачи. Иначе для текущей точки вновь повторяем первый и второй этапы и т. д.

Схема алгоритма

Шаг 1.

Задаются х0, 1, 3,1,2,1 – постоянный шаг пункта 1 и 2 – постоянный

         шаг пункта 2 (1<2). Присваивается к=0.

Шаг 2. (Первый этап).

Из точки хк осуществляется спуск на «дно оврага» с постоянным шагом   

          1. При спуске вычисление очередной точки осуществляется с          

         использованием   формул:

            xj+1 = xj - 1g(xj), где  g(x)={g(1)(x),…,g(n)(x)},

Пусть этот процесс остановится в точке xl.

Шаг 3. (Второй этап).

Из точки xl осуществляется спуск вдоль «дна оврага» с постоянным шагом 2. При спуске используются формулы: xj+1 = xj - 2g(xj), где

                  g(x)={g(1)(x),…,g(n)(x)},

Пусть этот процесс остановился в точке xm.

Шаг 4.

Если ||xkxm||  1 и ||||  3, то полагаем:

        и поиск минимума заканчивается.

Иначе k=m и переходим к шагу 2.

1.4.3. Овражные методы (Метод Гельфанда).

Вторая эвристическая схема, предложенная И.М. Гельфандом, состоит в следующем.

Пусть х0 и      - две произвольные близкие точки. Из х0 совершают обычный градиентный спуск с постоянным шагом и после нескольких итераций с малым шагом попадем в точку u0. Тоже самое делаем для точки      , получая точку     . Две точки u,     лежат в окрестности «дна оврага». Соединяя их прямой, делаем «большой шаг» в полученном направлении, перемещаясь «вдоль дна оврага» (шаг называют овражным шагом). В результате получаем точку х1. В ее окрестности выбираем точку        и повторяем процедуру.

Схема овражного метода 1.

Шаг 1.

   Вводятся начальное приближение х0, точность решения 1 и 3, шаг для      

   градиентного спуска, начальное значение для овражного шага. Из   точки х0  

   осуществляется градиентный спуск с постоянным шагом на дно оврага. В

   результате получается точка u0. Полагается к=0.

Шаг 2.

В окрестности хк берется точка      и из нее осуществляется градиентный  

   спуск. В результате получается точка      .    

Шаг 3.

Новая точка хк+1 определяется следующим образом. По формуле

или

вычисляется точка x'k+1. Из нее осуществляется градиентный спуск и мы получаем точку  . Если f()<f(uk), то полагаем xk+1= и uk+1=.

Иначе уменьшаем овражный шаг (например в 2 раза =/2)и повторяем шаг 3.

Шаг 4.

Если ||uk+1-uk||1 и ||||3, то полагаем:

и поиск минимума на этом заканчивается, иначе к=к+1 и переходим к шагу 2.

            Рассмотрим другую реализацию той же идеи.

Пусть х0 и х1 – две произвольные близкие точки. Как и в предыдущем случае, из каждой точки осуществим градиентные спуски с постоянным шагом . Получим точки u0 и u1, лежащие в окрестности «дна оврага». Соединяя их прямой, делаем «большой шаг» в полученном направлении. В результате получим точку х2. Из этой точки осуществим градиентный спуск и получим точку u2. А вот далее, для того чтобы осуществить «овражный шаг», берем предпоследнюю точку u1. Соединяя прямой точки u2 и u1, делаем шаг в полученном направлении и определяем х3. Дальше аналогичным образом вычисляются х45, … .

           

          

             Схема овражного метода 2

Шаг 1.

Задаются начальное приближение х0, точность решения 1 и 3, шаг для градиентного спуска, начальное значение для овражного шага.

Из точки х0 осуществляется градиентный спуск с постоянным шагом на «дно оврага». В результате получается точка u0.

В окрестности х0 берется точка х1, из которой тоже осуществляется градиентный спуск на «дно оврага». В результате получается точка u1. Полагается к=1. Если f(u0)<f(u1), то полагаем u0=u1, u1=u0. Если f(u0)>f(u1), то u0=u0, u1=u1.

Шаг 2.

Новая точка хк+1 определяется следующим образом. По формуле:

вычисляется точка x'k+1. Из нее осуществляется градиентный спуск и мы получаем точку  . Если f()<f(uk), то полагаем xk+1= и uk+1=.

Иначе уменьшаем овражный шаг (например в 2 раза =/2)и повторяем шаг 2.

Шаг 3.

Если ||uk+1-uk||1 и ||||3, то полагаем:

и поиск минимума на этом заканчивается, иначе к=к+1 и переходим к шагу 2.

1.5. Методы прямого поиска.

1.5.1. Общая характеристика.

Методы прямого поиска – это методы, в которых используются только значения целевой функции (методы нулевого порядка). Рассмотрим следующие методы, основанные на эвристических соображениях. Эти методы довольно часто применяются на практике, позволяя в ряде случаев получить удовлетворительные решения.

Основное достоинство методов нулевого порядка состоит в том, что они не требуют непрерывности целевой функции и существования производных.

1.5.2. Метод конфигураций (метод Хука и Дживса).

Алгоритм включает в себя два основных этапа поиска.

а) В начале обследуется окрестность выбранной точки (базисной точки), в результате находится приемлемое направление спуска;

б) Затем в этом направлении находится точка с наименьшим значением целевой функции. Таким образом находится новая базисная точка.

Эта процедура продолжается пока в окрестностях базисных точек удается находить приемлемые направления спуска.

Схема алгоритма

Шаг 1.

Задаются начальное приближение (первая базисная точка)

                                      ,   начальный шаг h для поиска направления спуска, точность решения (предельное значение для шага h). Присваивается к=0.

Шаг 2. (Первый этап).

Определяется направление минимизации целевой функции f(x)=f(x(1),x(2),…,x(n)) в базисной точке                                                     .  Для этого последовательно дают приращение переменным x(j) в точке хк. Присвоим z=xk. Циклически даем приращение переменным x(j) и формируем z(j)=xk(j)+h, если f(z)<f(xk), если же нет, то z(j)=xk(j)-h, если f(z)<f(xk), иначе z(j)=xk(j). Так для всех j(j=1,2,…,n).

Шаг 3.

Если z=xk, то есть не определилось подходящее направление, то обследование окрестности базисной точки хк повторяется, но с меньшим шагом h (например, h=h/2).

Если h>, то перейти к шагу 2, то есть повторить обследование точки хк.

Если h, то поиск заканчивается, то есть достигнуто предельное значение для шага h и найти приемлемое направление спуска не удается. В этом случае полагается                          

Шаг 4. (Второй этап).

Если zxk, то требуется найти новую базисную точку в направлении   

  вектора z-xk: xk+1=xk + (z-xk), где - коэффициент «ускорения поиска».

Определяется такое значение =к, при котором достигается наименьшее значение целевой функции в выбранном направлении, то есть функции

            f(xk +(z-xk) = ().

В зависимости от способа выбора к возможны варианты метода:

а) к==const постоянная для всех итераций;

б) задается начальное 0=, а далее к=к-1, если f(xk+1)<f(xk), иначе дробим к, пока не выполнится это условие;

в) к определяется решением задачи одномерной минимизации функции ().

Таким образом определяется новая базисная точка xk+1=xk + (z-xk). Полагаем к=к+1 и поиск оптимального решения повторяется с шага 2.

1.5.3.Метод симплекса.

Под симплексом понимается n-мерный выпуклый многогранник n-мерного пространства, имеющий n+1 вершину. Для n=2 это треугольник, а при n=3 это тетраэдр.

Идея метода состоит в сравнении значений функции в n+1 вершинах симплекса и перемещении симплекса в направлении лучшей точки. В рассматриваемом методе симплекс перемещается с помощью операций отражения. Далее принято следующее: х0(k), х1(k), … , хn(k) – вершины симплекса, где к - номер итерации.

Схема алгоритма

Шаг 1.      

           Построение начального симплекса.

Для этого задаются начальная точка х0(0) и длина ребра симплекса l. Формируются остальные вершины симплекса:

xi(0) = x0(0) + l*ei (i=1,2,…,n), где ei – единичные векторы.

 

Шаг 2.  

          Определение направления улучшения решения.

Для этого на к-й итерации вычисляются значения целевой функции в каждой точке симплекса. Пусть для всех i:

f(xmin(k))f(xi(k))f(xmax(k)),

где min, max, i – номера соответствующих вершин симплекса. Определим центр тяжести всех точек, исключая точку xmax(k),

Ck=(xi(k))/n .

 Тогда направление улучшения решения определяется вектором Ck-xmax(k).

Шаг 3.

Построение отраженной точки.

Замена вершины xmax(k) с максимальным значением целевой функции на новую точку с помощью операции отражения, результатом которой является новая точка:

uk=ck+(ck-xmax(k))=2ck-xmax(k)

x(2)

Шаг 4.

          Построение нового симплекса.

Вычисляем f(uk). При этом возможен один из двух случаев:

а) f(uk)<f(xmax(k);

б) f(uk)f(xmax(k).

Случай а): вершина xmax заменяется на uk, чем определяется набор вершин к+1-й итерации и к-я итерация заканчивается.

Случай б): в результате отражения получается новая точка uk, значение функции в которой еще хуже, чем в точке xmax, то есть отражать симплекс некуда. Поэтому в этом случае производится пропорциональное уменьшение симплекса (например, в 2 раза) в сторону вершины xmin(k):

                            xi(k+1)=x^i=(xi(k)+xmin(k))/2, где i=0,1,…,n.

На этом к-я итерация заканчивается.

Шаг 5.

           Проверка сходимости.

Если

         то поиск минимума заканчивается и полагается

В противном случае к=к+1 и происходит переход к шагу 2.

1.5.4. Метод деформируемого симплекса (метод Нелдера – Мида).

 

        Метод деформируемого симплекса обладает большей общностью и позволяет учитывать локальные свойства поверхности целевой функции. Симплексы вытягиваются в направлении наклона поверхности, их оси поворачиваются при встрече с оврагом на поверхности целевой функции, вблизи минимума они сжимаются.

В рассматриваемом методе симплекс перемещается с помощью трех основных операций над симплексом: отражение, растяжение и сжатие.

Схема алгоритма.

Шаг 1.

           Построение начального симплекса.

Задаются начальная точка х0(0) и длина ребра l. Формируются остальные вершины симплекса:  xi(0)=x0(0)+lei (i=1,2,…,n), где ei – единичные векторы.

Шаг 2.

         Определение направления улучшения решения.

         Для этого на каждой итерации вычисляются значения целевой функции в каждой вершине симплекса. Пусть для всех i 

              f(xmin(k)) f(xi(k))  f(xm(k))  f(xmax(k)),

    где  min, m, max, i-номера соответствующих вершин симплекса. Определим центр тяжести всех точек, исключая точку xmax(k),

                       

Тогда направление улучшения решения определяется векторов

                Ck- xmax(k).

Шаг 3.

   Построение нового симплекса.

   Замена вершины xmax(k) с максимальным значением целевой функции на новую точку с помощью операции отражения, результат которой является новая точка

                        uk=Ck+*(Ck-xmax(k)),   где -коэффициент отражения.

Шаг 4.

       Построение нового симплекса.

        Вычисляем f(uk), при этом возможно один из трех случаев:

 а)  f(uk)< f(xmin(k));

 б)  f(uk)>f(xm(k));

 в)  f(xmin(k)) f(uk)  f(xm(k));

Случай а): отражённая точка является точкой с наилучшим значением целевой функции. Поэтому направление отражение является перспективным и можно попытаться растянуть симплекс в этом направлении. Для этого строиться точка

                      Vk= Ck+*(uk-Ck),  где >1 –коэффициент расширения.

Если  f(vk)<f(uk), то вершина xmax(k) заменяется на vk, в противном случае на uk и k-ая итерация заканчивается.

Случай б): в результате отражения получается новая точка uk, которая, если заменить xmax(k), сама станет наихудшей. Поэтому в этом случае производится сжатие симплекса. Для этого строится точка vk:    

                  где  0<<1 –коэффициент сжатия.

Если f(vk)<min{f(xmax(k)),f(uk)}, то вершина xmax(k) заменяется на vk .

В противном случае вершинам xi(k+1) (i=0,1,2,..,n) присваивается значение:

 и на этом k-ая итерация заканчивается.

в)  вершина xmax(k) заменяется на uk, чем определяется набор вершин k+1-й  итерации и k –ая итерация заканчивается.

Шаг 5.  

    Проверка сходимости.

    Если  

то поиск минимума заканчивается и полагается

В противном случае к=к+1 и происходит переход к шагу 2.

Опыт использования описанного алгоритма показывает, что целесообразно брать следующие значения параметров:

 =1, =2, =0.5.

2.Задание на лабораторную работу.

  1.  Изучить изложенные методы многомерной безусловной оптимизации.

  1.  В соответствие с вариантом задания, определенным преподавателем,    составить программы реализующие методы многомерной безусловной минимизации и найти точку минимума целевой функции f(x)=f(x(1), x(2)) с заданной точностью указанными методами. Начальное приближение x0 и точность приводятся в условие задачи. Сравнить результаты, полученные разными методами для одной и той же целевой функции (в частности, сравнить число вычислении целевой функции и её производных, понадобившихся для получения заданной точности). Для каждого применяемого метода построить траекторию промежуточных точек, получаемых на очередных шагах метода и сходящихся к точке минимума.

  1.  Оформить отчет о выполнении задания с приведением условия задачи, алгоритмов и программ указанных в задании методов минимизации, графиков траекторий промежуточных приближений, таблицы результатов сравнения рассмотренных методов, заключения по результатам сравнения методов.

3. Варианты задания.

3.1  Методы многомерной безусловной оптимизации (первого и нулевого порядков):

             а) градиентный метод с постоянным шагом;

             б) градиентный метод с дроблением шага;

             в) метод наискорейшего спуска (указание метода одномерного поиска);

             г) метод покоординатного спуска с постоянным шагом;

             д) метод Гаусса-Зейделя (указание метода одномерного поиска);

             е) эвристический алгоритм;

            ж) овражный метод ;

             з) овражный метод ;

             к) метод конфигураций;

             л) метод симплекса;

             м) метод деформируемого симплекса.

3.2    Варианты заданий.

       Целевая функция f(x)=f(x(1), x(2)) зависит от двух аргументов. Функция f(x) следующего вида:

f(x)=a*x(1)+b*x(2)+ec*(x ) +d*(x ).

Целевая функция

Начальное

приближение

Точность

решения

a

b

c

d

1

1

-1,4

0,01

0,11

(1;0)

0,0001

2

2

-1,3

0,04

0,12

(0;1)

0,00005

3

10

-0,5

0,94

0,2

(0;0)

0,0001

4

15

0

1,96

0,25

1,96

0,25

5

3

-1,2

0,02

1,3

(0;-1)

0,00005

6

11

-0,4

1

0,21

(-1;0)

0,0001

7

10

-1

1

2

(1;0)

0,0003

8

15

-0,5

2,25

2,5

(0;0)

0,0002

9

20

0,4

0,3

0,3

(0;-1)

0,0001

10

25

0,9

0,35

0,35

(1;0)

0,0004

             


 

А также другие работы, которые могут Вас заинтересовать

37716. Оператори роботи з рядками. Обробка одновимірних масивів та рядків. Статичні одновимірні масиви 675.08 KB
  Статичні одновимірні масиви. Оператори роботи з рядками. Обробка одновимірних масивів та рядків. Мета: навчитись проводити обробку одновимірних масивів та рядків мовою програмування С.
37717. Логические элементы на МДП-транзисторах 1.39 MB
  Теоретические сведения Обратное преобразование двоичного кода в код I из N выполняют преобразователи кода называемые дешифраторами. Синтез структуры дешифратора как и любого другого преобразователя кодов начинается с записи таблицы соответствия входных и выходных кодов. если число входов m и число выходов n дешифратора связаны соотношением: n = 2m то выходы определены для всех двоичных наборов и дешифратор называется полным. Пример неполного дешифратора преобразователь двоичного кода 421 в код I из 10 согласно табл.
37718. Знакомство с принципами микропрограммой эмуляции ЭВМ с программным управлением 53 KB
  р0= 1 1ый элемент р1= 1 2ой элемент р2 Ктый элемент RCT =К2 р3 Сумма Микропрограмма выполняемого алгоритма Выборка команды Адрес МК Операция Поле Значение Функция 00 mov PC OP dd PC 2 B SRC LU DB CONST 7 4 3 1 2 PC R7 D RGB RSC0 Шина DB 01 mov PC RF mov PC RGK JMP B R DST CH F 1 4 2 RF Чтение ОП RGR РЗУ JMP Адрес МК Операция Поле Значение Функция 02 dd R3R0 M MB LU CH 1 2 3 0 Из поля R1 команды Из...
37719. Дослідження динамічних властивостей теплового об’єкта регулювання 984.5 KB
  Мета роботи: експериментальне дослідження динамічних властивостей регулювання теплового об’єкта знайомство з методами експериментального визначення перехідної характеристики об’єкта регулювання та її параметрів. Опис лабораторного макета Дослідження динамічних властивостей теплового об'єкта регулювання і релейної CP температури здійснюється на стенді схема якого подана на рис. 0 3 4 45 55 65 8 105 125 18 225 t˚С 28 29 295 30 31 32 33 34 35 36 37 Δt˚С 0 1 05 05 1 1 1 1 1 1 1 Основними параметрами перехідної...
37720. Побудова кінематичної схеми плоского механізму та його структурний аналіз 952.57 KB
  Мета роботи - набути навичок складання структурних і кінематичних схем механізмів та проведення їх структурного аналізу. Зміст роботи: на прикладі моделі плоского механізму скласти кінематичну і структурну схеми, визначити кількість ланок, у тому числі вхідних і вихідних, кількість кінематичних пар, записати структурну формулу механізму та встановити його клас і порядок.
37721. Специфікування предметної галузі проекту засобами мови uml. Кількісна оцінка діаграм 108 KB
  кількісна оцінка діаграм Мета: дослідження класів та отримання навиків у побудові діаграми класів UML для специфікування предметної галузі використання стереотипів UML та структурування моделі UML за допомогою пакетів. Опис класів. Побудова діаграми класів Діаграма класів Clss digrm призначена для відображення статичної структури ПЗ проекту що проектується. Діаграма містить класи і взаємозв’язки між ними та дозволяє описати їх структуру та типи відношень.
37722. ІМПІЧМЕНТ (АМЕРИКАНСЬКА ЗА ПОХОДЖЕННЯМ МОДЕЛЬ) 99.5 KB
  Тема даної роботи досить актуальна, адже складність процедури імпічменту зумовлює те, що в історії відбувалися лише окремі успішні випадки відсторонення посадових осіб з посад, а імпічмент главі держави вважається резонансною подією.
37723. Подготовка изображений для WEB 3.35 MB
  Изображения в сети также важны как и в любом печатном издании. Изображения должны быть правильно отмасштабированы иметь хорошую четкость и сохранены в цветовом пространстве sRGB. Поэтому для получения хороших результатов при сайтостроительстве нужно корректно отмасштабировать изображения перед помещением их в сеть. В Интернет используются изображения с цветовым пространством sRGB.
37724. Создание Форм В INKSCAPE 874 KB
  Для этого щелкните по верхней линейке и перетащите вниз чтобы создать горизонтальную направляющую и щелкните по левой линейке и перетащите вправо чтобы создать вертикальную направляющую см. Выберите инструмент Рисовать круги эллипсы и дуги F5 и щелкните на значке Заливка в правом верхнем углу. Щелкните правой кнопкой мышки на круг и нажмите Продублировать CtrlD. Затем в окне трансформации установите 80 в поле Ширина и щелкните по кнопке pply.