70140

Изучение конструкции цилиндрических и конических редукторов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Познакомится с классификацией, кинематическими схемами, конструкцией узлами и деталями цилиндрических и конических редукторов. Выяснить назначения всех деталей редукторов. Определение основных параметров редуктора. Определить параметры зацепления, размеров зубчатых колес и передач.

Русский

2014-10-16

61.5 KB

3 чел.

Зеленодольский институт машиностроения информационных технологий (филиал) КНИТУ-КАИ

                                                       

                                                    

                                                Кафедра машиностроения  

        

Лабораторная работа №4

Тема: «Изучение конструкции цилиндрических и конических редукторов»

 

                        Выполнил студент: гр. 31351 Филюшин Д.В.      

                                                         Принял: Мотрушенко Л.М.

                                       Зеленодольск 2013 г.

  1.  Цель работы:

-Познакомится с классификацией, кинематическими схемами, конструкцией узлами и деталями цилиндрических и конических редукторов.

-Выяснить назначения всех деталей редукторов.

-Определение основных параметров редуктора.

-Определить параметры зацепления, размеров зубчатых колес и передач.

2) Описание объекта исследования, приборов и инструментов:

Объектами исследования является двухступенчатый цилиндрический и одноступенчатый конический редукторы.

Для выполнения разборки и сборки редуктора необходимо иметь следующие инструменты: отвертку ручную, штангенциркуль, кронциркуль, ключ торцевой изогнутый, мел.

Редуктором называется механизм, состоящий из зубчатых передач, выполненных в виде отдельной сборочной единицы и предназначенный для передачи мощности от двигателя к приводному валу машины с понижением угловой скорости и увеличение вращающегося механизма.

3)Кинематическая схема 2х ступенчатого цилиндрического редуктора:

Up- передаточное число от 8 до 40

4) Цилиндрический двухступенчатый редуктор

Редуктор цилиндрический двухступенчатый зубчатый выпускается с машинным   передаточным числом от 8 до 40. Нагрузка может быть постоянная и переменная, одного направления и реверсивная.

Составляющие редуктора:

  1.  Корпус
  2.  Крышка
  3.  Болты
  4.  Быстроходный вал
  5.  Тихоходный вал
  6.  Шестеренки
  7.  Колеса (быстроходная ступень)
  8.  Шестерни
  9.  Шестерни (тихоходная ступень)

10)Конический роликовый подшипник

11)Закладная крышка

12)Регулировочные винты

13)Наживные шайбы

14)Координирующие штифты

15), 16) специальные фланцы

17) Бобышка

18),19) приливки

20) отжимные болты

21) пробка

22)пробка

23) проушины

24) проушины

Замеренные параметра 2х ступенчатого цилиндрического редуктора

Пара-

метры

Един.

Изме

рения

Быстроходная ступень

Тихоходная ступень

Обозначе-

ния

Значения

Обозначе-

ния

Значения

Число зубьев

Шестерни

Колеса

шт

                      

Z1

Z2

20

  80

Z3

Z4

16

80

Направле-

нии линии

зубьев

шестерни

колеса

левая

правая

левая

правая

Межосе-

вые рас-

стояния

мм

a w1

130

a w2

82

Ширина зубча-

того венца

Шестерни

Колеса

мм

b1

b2

0,35

0,35

b3

b4

0,5

0,5

Длина зуба

Шестерни

Колеса

мм

bw1

b w2

27

21

bw3

b w4

43

33

Диаметр выс-

тупа

Шестерни

Колеса

мм

da1

da2

37

130

da3

d a4

48

206

Диаметр впадин

Шестерни

Колеса

мм

df1

df2

29

124

df3

df3

35

205

5) Преобразовать расчеты:

Определить передаточное число каждой ступени и общей передаточного числа редуктора:

 

U=z2/z1;       Ur=z4/z3;   Up=U*Ur       

Ориентировочно определить уровень наклона быстроходной и тихоходной ступени

β 1,   β 2  

Определить расчетную величину модуля быстроходной и тихоходной ступени

Т1, Т2       mi=2aw*cosβ/zsi;      zsi-суммарное число зубьев шестерни и колеса(быстроходной и тихоходной) ступени

Получаемую величину  согласуют со стандартным значением по ГОСТ-9563-80

Уточнить угол наклона зубьев β1=10

Рассчитать геометрические параметры шестерни и колеса быстроходной и тихоходной ступени, мм

Делительный диаметр:

di=mi*zi/cosβi;      

Диаметр окружности вершин:

dai=di+2m;

Диаметр окружности впадин:

df=di-2,5mi;

Подсчитать коэффициент ширины колеса относительно межосевого расстояния для быстроходной и тихоходной ступеней wba1, wba2

wba1=bi/dwi

Параметры

Един.

Измер.

Быстроходная ступень

Тихоходная ступень

Обозначение

Значение

Обозначение

Значение

Межосевое

расстояние

мм

aw1

130

aw2

82

Передаточ-

ное число

мм

u

4

ur

5

Общее передаточное

число редуктора

мм

              Up=20

Уровень наклона

β

10

β

10

Рассчетная вели-

чина модуля

мм

Т1

1,3

Т2

1,3

Делительный

диаметр 

мм

di=283

Диаметр окруж-

ностей вершин

мм

                 dai=285,6

Диаметр окруж-

ности впадин

мм

                 df=  279,75

Коэффициент

ширины колеса

относительно

межосевого рас-

стояния

мм

wba1

0,04

wba2

0,04


 

А также другие работы, которые могут Вас заинтересовать

37937. Изучение вынужденных колебаний в электрическом контуре 438.5 KB
  В теоретической части методических указаний изложены условия возникновения вынужденных колебаний в электрическом контуре выведено дифференциальное уравнение этого вида колебаний рассмотрены явления резонансных тока и напряжения. Для осуществления вынужденных колебаний в контур включают источник тока обладающий периодически изменяющейся ЭДС рис. в каждый момент времени сила тока во всех сечениях цепи одинакова. Перейдя от тока I к заряду q и введя обозначения: ω02=1 LС ...
37938. ИЗУЧЕНИЕ ЭЛЕКТРОНННО – ЛУЧЕВОГО ОСЦИЛЛОГРАФА 206.5 KB
  4 Устройство и принцип работы осциллографа.11 ЛАБОРАТОРНАЯ РАБОТА № 50 ИЗУЧЕНИЕ ЭЛЕКТРОНННО – ЛУЧЕВОГО ОСЦИЛЛОГРАФА Цель работы Изучение устройства электронно – лучевого осциллографа и знакомство с некоторыми видами наблюдений и измерений которые можно проводить с его помощью. Устройство и принцип работы осциллографа Осциллографы бывают различного типа и назначения. Например с помощью осциллографа можно найти силу тока и напряжение изучать зависимость силы тока и напряжения от времени измерять сдвиг фаз между ними сравнивать...
37939. Изучение свойств ферромагнетиков и явления магнитного гистерезиса для железа 202.5 KB
  Изучение магнитных свойств вещества. Расчет и построение кривой намагничивания, снятие петли гистерезиса и определение тепловых потерь на перемагничивание ферромагнетиков. Вычисление коэрцитивной силы и остаточной намагниченности изучаемого образца железа.
37940. ОПРЕДЕЛЕНИЕ УСКОРЕНИЯ СВОБОДНОГО ПАДЕНИЯ С ПОМОЩЬЮ ФИЗИЧЕСКОГО И МАТЕМАТИЧЕСКОГО МАЯТНИКОВ 166.5 KB
  Определение ускорения свободного падения с помощью математического маятника. Определение ускорения свободного падения с помощью оборотного маятника.Определение ускорения свободного падения с помощью математического маятника.Определение ускорения свободного падения с помощью оборотного маятника.
37941. ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА 168.5 KB
  11 Изучение свободных незатухающих колебаний пружинного маятника.11 Изучение затухающих колебаний пружинного маятника12 5. Изучение вынужденных колебаний пружинного маятника.14 ЛАБОРАТОРНАЯ РАБОТА № 10 ИЗУЧЕНИЕ КОЛЕБАНИЙ ПРУЖИННОГО МАЯТНИКА Цель работы Изучение свободных незатухающих свободных затухающих и вынужденных колебаний пружинного маятника.
37942. Изучение собственных колебаний струны 137 KB
  Колебания струны5 3.10 Лабораторная работа № 11 а Изучение собственных колебаний струны 1. Цель работы Изучение собственных колебаний струны. Колебания струны В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны причем в местах закрепления струны должны располагаться узлы.
37943. Определение ускорения силы тяжести при свободном падении тела 374 KB
  Центростремительное ускорение соответствующее движению Земли по орбите годичное вращение гораздо меньше чем центростремительное ускорение связанное с суточным вращением Земли. Поэтому с достаточной точностью можно считать что система отсчета связанная с Землей вращается относительно инерциальных систем с постоянной угловой скоростью суточного t = 86400 с вращения Земли . Если не учитывать вращение Земли то тело лежащее на ее поверхности следует рассматривать как покоящееся сумма действующих на это тело сил равнялось бы тогда...
37944. Изучение закона сохранения энергии с помощью маятника Максвелла 188 KB
  12 Лабораторная работа № 13 Изучение закона сохранения энергии с помощью маятника Максвелла 1. Цель работы Изучение закона сохранения энергии на примере движения маятника Максвелла. Диск маятника представляет собой непосредственно сам диск и сменные кольца которые закрепляются на диске. При освобождении маятника диск начинает движение: поступательное вниз и вращательное вокруг своей оси симметрии.
37945. НАКЛОННЫЙ МАЯТНИК 252 KB
  Изучение силы трения качения. Определение коэффициента трения качения. Со стороны поверхности на тело действует сила трения FТР. Тело скользит по поверхности со скоростью на него действует сила трения совершающая отрицательную работу вследствие чего полная механическая энергия системы уменьшается т.