70189

Определение состава газовой фазы и окисляемости металлов при термообработке оксидного катода

Курсовая

Физика

В процессе откачки ЭВП наибольшее газовыделение происходит на этапе термообработки оксидного катода. Оксидное покрытие наносится на поверхность металлического керна катода (Mn) в виде суспензии карбонатов щелочноземельных металлов.

Русский

2014-10-16

594.94 KB

32 чел.

Государственный комитет РФ по высшему образованию

Санкт-Петербургский Государственный Электротехнический

Университет им. В.И. Ульянова (Ленина)

Курсовая работа по дисциплине:

«Физико-химические основы технологии материалов электронной техники»

              

Студент

Ковальский А.С.

группа 0201                                

2013

Санкт-Петербургский государственный электротехнический университет

Кафедра ФЭТ

Задание на курсовую работу по дисциплине:

«Физико-химические основы технологии материалов электронной техники»

(05-13)

Студенту   Ковальский А.С.   группа 0201  

Часть 1 Определение состава газовой фазы и окисляемости металлов при термообработке оксидного катода.

Исходные данные:

-Температурный интервал Тк=(700…1400)К

-Материалы: катод SrO(75%)+CaO(25%); металл керна MnMn3O4; MnO

-Суммарное давление в системе -

  1.  Оксидный катод: устройство, материалы, назначение
  2.  Рассчитать и построить температурные зависимости ,  ,
  3.  Рассчитать и построить зависимость для заданной пары металл-окисел. Сделать вывод о возможности окисления заданного металла.

Часть 2 Диффузионное легирование полупроводников

Исходные данные:

-Полупроводник - легирующая примесь  CdGaAs

        ()

-Исходная концентрация примеси в полупроводнике:

-Температура «загонки» и «разгонки»: ,

-Время «загонки» и «разгонки»:  ,

      ,

      ,

  1.  Рассчитать и построить зависимость коэффициента диффузии от температуры
  2.  Определить профиль легирующей примеси для каждого этапа диффузии и глубину p-n перехода

Дата выдачи задания:

Дата сдачи работы:

Преподаватель:

  1.  
    Термодинамическая оценка окисляемости металлов при термообработке оксидного катода.

  1.  Общие сведения

Оксидные катоды являются в настоящее время одним из распространенных типов термокатода, применяемых в электровакуумных приборах (ЭВП) различных классов.

В процессе откачки ЭВП наибольшее газовыделение происходит на этапе термообработки оксидного катода. Оксидное покрытие наносится на поверхность металлического керна катода (Mn) в виде суспензии карбонатов щелочноземельных металлов. В процессе термообработки оксидного катода в вакууме происходит реакция:

,  (1.1)

имеющей константу равновесия      kp1(T) = pСО2 .

Образующаяся окись бария SrО, легированная металлическим стронцием и специальными присадками в керне; служит активным термоэмиссионным покрытием. Углекислый газ CО2, выделяющийся в реакции, способствует удалению углерода из оксидного слоя с помощью газотранспортной химической реакции:

  ,  (1.2)

закон действующих масс для которой имеет вид :    

Таким образом, при термообработке оксидного катода газовая фаза, в основном, содержит газы СО2 и СО. По отношению к металлам Ме, такая среда обладает окислительно-восстановительными свойствами:

 (1.3)

 (1.4)

      

Закон действующих масс для этой реакции имеет вид :  

Направление протекания реакций (1.3) и (1.4) обусловлено составом газовой среды в вакуумном приборе. При этом давления pСО2 и pСО, формируемые реакциями (1.1) и (1.2), являются для реакций (1.3) и (1.4) неравновесными, которые определяются внешними условиями. В общем случае они отличаются от равновесных давлений, входящих в константу равновесия kр3. В дальнейшем равновесные давления будем обозначать и , т.е. .

Таким образом, для оценки термодинамической возможности окисления металлических деталей арматуры прибора, следует в первую очередь провести расчет состава газовой среды, формируемой реакциями (1.1) и (1.2), а затем на основании уравнения изотермы Вант-Гоффа для реакции (1.3) и (1.4) определить направление ее протекания в газовой среде, созданной реакциями (1.1) и (1.2).

1.2. Расчет состава газовой фазы

Целью термодинамического расчета является нахождение температурных зависимостей рCO2(Тк) и рСО(Тк), где Тк - температура обработки катода. Обычно условия разложения карбонатов при термообработке таковы, что скорость газовыделения много больше скорости откачки. Таким образом, практическая ситуация соответствует изохорному процессу, протекающему в объеме, ограниченном вакуумной оболочкой прибора. В этом случае для реакций (I.I) и (1.2) надо применять закон действующих масс в форме:

   и   

Отсюда для температуры Тк  находим:

;      (1.5)

Связь  kP(Т) и kC(Т) определяется из основного газового соотношения

pi = Ci RT:

 ,   (1.6)

где - изменение числа молей газообразных компонентов реакции. Тогда подставляя (1.5) в (1.4), получаем:

;    (1.7)

Таким образом, расчет состава газовой фазы сводится к нахождению температурной зависимости констант равновесия kР1(Т) и kР2(Т).

1.3. Расчет констант равновесия

Запишем химическую реакцию в обобщенном виде

  ,  (1.8)

В основе расчета константы равновесия kp(Т) любой реакции лежит соотношение, выражающее kp через G0T:

     (1.9)

При этом стандартный изобарный потенциал G0T:

     (1.10)

Таким образом, расчет kР(Т) сводится к вычислению НТ0 и для конкретной химической реакции. Исходными для расчета служат выражения:

 `   (1.11)

    (1.12)

где  и – стандартные тепловой эффект и изменение энтропии реакции при Т = 298 К, Ср(Т) - изменение изобарной теплоемкости в реакции, зависящее от температуры.

Для определения  и  используют выражения:

;    (1.13)

;  ,   (1.14)

где и – стандартные теплоты образования соединений из простых веществ и стандартные энтропии веществ.

Для вычисления СP(T) применяют выражение, аналогичное по форме выражениям (1.13) и (1.14):

   (1.15)

Температурная зависимость изобарных теплоемкостей СP,к(н)(T) аппроксимируется функцией:

  ,   (1.16)

где a ,b и c  - коэффициенты, заданные для данного вещества.

Таким образом, расчет температурной зависимости kр(Т) через , в соответствии с (1.9), проводят по формулам (1.10)  (1.16). При этом возможны три приближения.

Т.к. катод имеет напыление смеси окислов Sro и CaO рассмотрим их в отдельности:

SrO

1.3.1.Первое приближение.

В условиях первого приближения пренебрегается температурной зависимостью термодинамических величин, т.е. полагается, что СР = 0. Тогда (1.10) принимает вид:

    (1.17)

Получаем:

   

  

Итого:

1.3.2.Второе приближение

Пренебрегаем температурной зависимостью теплоемкостей, т.е. полагаем Ср = Ср,298 = const. Тогда из (1.10), (1.11) и(1,12) следует:

 (1.18)

где

и введена функция Улиха:

 

Получаем:

  

 

Итого:

1.3.3.Третье приближение

Учитывает точную зависимость Ср(Т), рассчитанную по формуле (1.14) на основе табличных данных. В этом приближении используют формулу Темкина-Шварцмана:

 ,  (1.18)

где a, b и c  - алгебраические суммы коэффициентов (1.15), подсчитанные с учетом стехиометрических коэффициентов реакции (I.7) по общему правилу:

Коэффициенты Темкина – Щварцмана, входящие в уравнение (1.18), вычисляются по следующим формулам:  

   

  

 

 

Получаем:

Итого:

CaO

1.3.5.Первое приближение

    (1.17)

Получаем:

   

  

Итого:

1.4. Расчет окисляемости металлов

Для выяснения вопроса об окисляемости металлов в газовой среде, сформированной в процессе термообработки оксидного катода, необходимо рассчитать температурный ход константы равновесия kР3 окислительно-восстановительной реакции (1.3). Изобарный потенциал этой реакции в реальных условиях вычисляется по уравнению изотермы Вант-Гоффа:

,  (1.20)

где pсо/pСО2 – отношение давлений, полученное из расчета газовой фазы, отличающееся от соотношения равновесных величин для реакции (1.3) .

1.4.1.Первое приближение.

В условиях первого приближения пренебрегается температурной зависимостью термодинамических величин, т.е. полагается, что СР = 0. Тогда (1.10) принимает вид:

    (1.17)


Получаем:

   

  

Из (1.19) видно, что:

а) при pсо/pСО2   имеем G > 0, т.е. реакция (1.4) сдвинута влево и соответствующий металл не окисляется в данной газовой смеси;

б) при pсо/pСО2 < имеем G < 0, т.е. реакция (1.4) сдвинута вправо и металл окисляется.

Учитывая тот факт, что оксид на катоде механическая смесь , построим зависимости отношения парциальных давлений и оценим окисляемость металла (используем только первое приближение):

Из приведенных графиков видно, что pсо/pСО2  , т.е. имеем G > 0, а следовательно реакция (1.3) сдвинута влево и соответствующий металл не окисляется в данной газовой смеси.

  1.  
    Диффузионное легирование полупроводника

  1.  Построение зависимости коэффициента диффузии от температуры

Коэффициент диффузии D выражается в соответствии с законом Аррениуса:

,

где k – постоянная Больцмана; D0, Ea – постоянные значения коэффициента диффузии при стандартной температуре и энергия активации.

   

  1.  Определение профиля легирующей примеси для каждого этапа диффузии и глубины p-n-перехода

  1.  Загонка. Легирование из постоянного источника

Стадии загонки примеси соответствует модель неограниченного поверхностного источника, и на данной стадии справедливы следующие начальные и граничные условия:

  

Решение уравнения  имеет следующий вид:

  ,

где С0 – поверхностная концентрация примесных атомов, обеспечиваемая внешней средой с неограниченным количеством примеси.

 

Общее количество примеси, введенной через единицу поверхности полупроводника за время t1, находится интегрированием потока:

 

  1.  Разгонка. Легирование из бесконечно тонкого источника с отражающей границей

Начальные и граничные условия имеют следующий вид:

Решение уравнения для данной задачи выражается функцией нормального распределения Гаусса:

   (3.9)

Величину Q называют также дозой легирования.

а)

Из графиков видно, что глубина p-n-перехода:


б)

Из графиков видно, что глубина p-n-перехода:


в)

Из графиков видно, что глубина p-n-перехода:


Список литературы

  1.  Барыбин А.А., Сидоров В.Г. Физико-технологические основы электроники.  СПб.: Издательство «Лань», 2001. – 272 с.
  2.  Китель Ч. Введение в физику твердого тела. /Пер. с англ.  М.: «Мир», 1980. – 420 с.
  3.  Крапухин В.В., Соколов И.А., Кузнецов Г.Д. Теория процессов полу-проводниковой технологии. Электронные и микроэлектронные материалы и компоненты твердотельной электроники.  М.: МИСИС, 1995.  493 с
  4.  Курносов А.И., Юдин В.В. Технология производства полупроводниковых приборов и интегральных микросхем.  M.: «Высш. шк.», 1986. – 368 с.
  5.  Свойства неорганических соединений. Справочник / Ефимов А.И. и др.  Л.: «Химия», 1983  392 с.
  6.  Технология и аппаратура газовой эпитаксии кремния и германия / Скворцов И.М., Лапидус И.И., Орион Б.В. М.: Энергия, 1978.  136 с.
  7.  Угай Я.А. Введение в химию полупроводников.  M.: «Высш. шк.», 1975. – 302 с.


 

А также другие работы, которые могут Вас заинтересовать

49176. Расчёт структуры осесимметричных стационарных электромагнитных полей 291.5 KB
  Решение проводится в цилиндрических координатах связанных с центром цилиндра r радиусвектор точки наблюдения ось z направлена вдоль приложенного электрического поля рисунок 1. Если совместить ось z цилиндрической системы координат с осью цилиндра перпендикулярной E0 то потенциал поля не будет зависеть от координаты z и уравнение Лапласа запишется в виде ∆φ= 1.11 Величину служащую для описания...
49177. Комплексная система защиты информации на предприятии. Методические указания 204.5 KB
  Организация и технология защиты информации профиль подготовки: Специалист по защите информации. Организация и технология защиты информации; учебными планами по специальностям; общими указаниями по организации и методике проведения курсового проектирования в вузах; положением о курсовых работах НОО ВПО НП ТИЭИ. Данные методические указания предназначены для студентов 5го курса для выполнении...
49178. Я и физика 21.86 KB
  Слово энергия произносят все кому не лень но редко кто хотя бы немного разбирается в энергетике науке об энергии. Энергетика на самом деле не является наукой об энергии она скорее отрасль производства но все равно именно она увлекла меня настолько что я уверена в том что мое будущее будет связано именно с этой отраслью физики. Конечно традиционные энергетические ресурсы это хорошо и было бы кощунственно их не использовать но меня также привлекают и альтернативные источники энергии. В недалеком будущем когда в мире постепенно...
49179. Підприємство, яке спеціалізується на виробництві двох видів виробів 97.6 KB
  Суму витрат на виготовлення продукції кошторис та собівартість одиниці виробу калькуляцію. Оптимальна кількість факторів виробництва кількість обладнання та чисельність робітників визначається із системи рівнянь: де запланований обєм виробництва двох виробів; Звідки середня місячна заробітна плата 1 го робітника; витрати на утримання та експлуатацію обладнання грн міс; Ціна одиниці обладнання взята без ПДВ гранична норма технологічного заміщення виробництва Використавши цю рівність...
49181. Принципиальная схема управляемого блока питания для двигателя в механизме подъёма хирургического стола 633.32 KB
  Механический стол показанный на рисунок 1 уже устаревший но до сих пор успешно применяется в области медицинского приборостроения. Рисунок 1. Механический стол Гидроприводные столы рисунок 2 являются следующим этапом развития конструкции операционного стола. Рисунок 2.
49182. Разработка игры «Морской бой» с ИИ 4.29 MB
  Разработанный программный продукт реализует классическую версию игры «морской бой» с возможностью выбора уровня сложностей и визуализацией. Кроме того, в проекте реализована система ведения статистики игры. Среди рассмотренных аналогов ни один не обладал всеми этими возможностями сразу.
49183. Жизнедеятельность М. Вебера. Теория познания и методология 246.2 KB
  Вебере и его трудах несмотря на то что современная социология уже ушла далеко вперед актуальность этой теме не вызывает сомнений. Вопервых потому что как и всякий крупный ученый М. Вебера не только классическую социологическую теорию но и чтото новое современное и апеллирующее к непреложным и неизменным законам по которым живет социум.: Аграрная история древнего мира 1923 сразу поставившие его в ряд наиболее крупных ученых свидетельствуют о том что он усвоил требования исторической школы и умело пользовался...
49184. Понятие марксистской социологии. Диалектический материализм и социология 161.07 KB
  Устами своих основоположников Карла Маркса и Фридриха Энгельса она заявила о себе как о научном истолковании исторического процесса базирующемся на объективных данных исторической экономической социологической и других науках. Марксом и Ф.