703

Реализация модели Ханойские башни

Курсовая

Информатика, кибернетика и программирование

Разработать программу на языке C#, реализующую модель игры Ханойские башни. В данной курсовой работе спроектирована и разработана программа на языке C#, которая на основе запрошенных у пользователя входных данных моделирует Ханойские башни или позволяет разложить их вручную.

Русский

2013-01-06

56.5 KB

300 чел.

Государственное образовательное учреждение высшего профессионального образования московской области

Международный Университет

природы, общества и человека «Дубна»

Курсовая работа по предмету

программирование на языке высокого уровня на тему:

«Реализация модели «Ханойские башни»»

Выполнила:

студентка гр.1012

Гаджиева Д.А.

Руководители:

ст. преп.

Мельникова О. И.,

Иванцова О. В.

Дубна, 2012


Оглавление

Оглавление

Введение

Цель и задачи работы

Входные параметры

Описание работы

Интерфейс и структура программы

Блок-схема основной части программы

Описание наиболее интересной части программы

Заключение

Список литературы

 


Введение

В настоящее время ни один человек не может представить себе жизни без компьютера, его влияние  достигло очень больших масштабов. Мы можем заметить, что ни в одной области не обходится без «железного друга», который в несколько раз увеличивает производительность труда. Но компьютер проник не только в рабочую сферу. Сейчас в каждом доме, каждый ребенок и взрослый использует это техническое средство.

В наше время многие любят играть в компьютерные игры. Даже взрослые люди порой не прочь отдохнуть, разложив пасьянс или задумавшись над головоломкой. Далеко ходить не нужно. Но ведь мало кто задумывается, как  пишутся модели этих игр? В данной курсовой работе рассматривается реализация алгоритма «Ханойские башни».

Задача состоит в том, чтобы перенести пирамиду из n-го числа колец за наименьшее число ходов. За один раз разрешается переносить только одно кольцо, причём нельзя класть большее кольцо на меньшее.

Легенда

В одном из буддийских монастырей монахи уже тысячу лет занимаются перекладыванием колец. Они располагаются тремя пирамидами, на которых надеты кольца разных размеров. В начальном состоянии 64 кольца были надеты на первую пирамиду и упорядочены по размеру. Монахи должны переложить все кольца с первой пирамиды на вторую, выполняя единственное условие – кольцо нельзя положить на кольцо меньшего размера. При перекладывании можно использовать все три пирамиды. Монахи перекладывают одно кольцо за одну секунду. Как только они закончат свою работу, наступит конец света. Количество перекладываний в зависимости от количества колец вычисляется по формуле 2n-1. Для 64 колец это 18 446 744 073 709 551 615 перекладываний, и, если учесть скорость одно перекладывание в секунду, получится около 584 942 417 355 лет, то есть апокалипсис наступит нескоро.

На самом деле эту известную игру придумал французский математик Эдуард Люка, в 1883 году её продавали как забавную игрушку. Первоначально она называлась «Профессор Клаус из Колледжа Ли-Су-Стьян», но вскоре обнаружилось, что таинственный профессор из несуществующего колледжа — не более чем анаграмма фамилии изобретателя игры — профессора Люка из колледжа Сен-Луи.

Цель и задачи работы

Разработать программу на языке C#, реализующую модель игры «Ханойские башни». То есть мы имеем n колец, в нашем случае от 1 до 9, которые мы должны переместить с одной башни на другую, в том же порядке, как они заданы изначально.

При работе с этой программой пользователь должен иметь возможность:

  •  Выбирать число колец.
  •  Выбирать скорость перемещения колец
  •  Получить справочные материалы по данной программе.

Программа должна отвечать следующим требованиям:

  •  Иметь интерфейс, который во многом упрощает работу пользователю.
  •  Корректно работать при нескольких запусках.
  •  Иметь справочные материалы.
  •  Иметь достойное дизайнерское оформление.

Входные параметры

В качестве параметров, задаваемых пользователем, выбраны количество, цвет и скорость перемещения колец.


Описание работы

Интерфейс и структура программы

При запуске программы, на экране появляется окно «приветствие» (см. Приложение, рис.1),  которое другими словами можно назвать «титульным листом», на котором указана тема курсовой работы и имя автора. После нажатия кнопки «Начать» открывается основное окно программы (Приложение, рис.2). На этом окне присутствует 5 кнопок, поле для вывода количества колец и башня с изначальным количеством колец.

Действия, выполняемые при нажатии кнопок:

«Нарисовать» — рисует башенку с указанным количеством колец.

«Решить» — Самым оптимальным способом перекладывает кольца башни.

«Стоп» — Останавливает процесс перекладывания колец, после чего пользователь может продолжить вручную.

«Быстрее»/«Медленнее» — Увеличивает/уменьшает скорость перемещения колец.

Так же пользователь может посмотреть более подробную информацию о приложении в меню «Описание» и «Легенда» и выбрать цвета колец башни.

Ход игры:

  1.  Пользователем выбирается количество колец от 1 до 9.
  2.  Далее нажимается кнопка «Нарисовать», вследствие чего появятся кольца.
  3.  Пользователь может вручную попытаться переложить кольца или нажать кнопку «Решить», что бы это сделал компьютер.
  4.  После того как кольца будут перемещены, можно сравнить оптимальное количество перемещений с полученным.


Блок-схема основной части программы

Блок-схема основной части программы представлена на рис.1.

  1.  

Рис.1.Блок-схема основной части программы


Описание наиболее интересной части программы

На мой взгляд, самой интересной частью программы, является описание самого перемещения, то есть хода игры. На нечетном шаге мы всегда перемещаем верхний круг: с 1-ой башни на 3-ю, со 2-ой на 1-ю или с 3-ей на вторую. На четном шаге мы находим номер кольца, которое нужно передвинуть и перемещаем его на единственную доступную башню.  

Метод выбран рекурсивный.

Рекурсия — метод определения класса объектов или методов предварительным заданием одного или нескольких (обычно простых) его базовых случаев или методов, а затем заданием на их основе правила построения определяемого класса, ссылающегося прямо или косвенно на эти базовые случаи.

Другими словами, рекурсия — способ общего определения объекта или действия через себя, с использованием ранее заданных частных определений. Рекурсия используется, когда можно выделить самоподобие задачи.


Заключение

В данной курсовой работе спроектирована и разработана программа на языке C#, которая на основе запрошенных у пользователя входных данных моделирует «Ханойские башни» или позволяет разложить их вручную. Программа обладает достаточно устойчивой защитой от ввода некорректных данных, удобным интерфейсом для работы пользователей и справочными материалами.

Данная программа может быть использована в качестве примера по моделированию объектов и процессов в C#, или в качестве игры.


Список литературы

  1.  Шилдт Г. C# Учебный курс. — СПб.: Питер. 2002.
  2.  Лабор В. В. Си шарп: Создание приложений для Windows. — Минск: Харвест. 2003.
  3.  Шилдт Г. Полный справочник по C#. — М.: Вильямс. 2004.


 

А также другие работы, которые могут Вас заинтересовать

24983. Электромагнитная индукция. Магнитный поток. Закон электромагнитной индукции. Правило Ленца 42 KB
  Закон электромагнитной индукции. Опыты по электромагнитной индукции. Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Магнитным потоком через замкнутый контур площадью S называют физическую величину равную произведению модуля вектора магнитной индукции В на площадь контура S и на косинус угла а между направлением вектора магнитной индукции и нормалью к площади контура.
24984. Явление самоиндукции. Индуктивность. Электромагнитное поле 27.5 KB
  Явление самоиндукции заключается в появлении ЭДС индукции в самом проводнике при изменении тока в нем. Примером явления самоиндукции является опыт с двумя лампочками подключенными параллельно через ключ к источнику тока одна из которых подключается через катушку рис. Это происходит потому что после замыкания ключа ток достигает максимального значения не сразу магнитное поле нарастающего тока породит в катушке индукционную ЭДС которая в соответствии с правилом Ленца будет мешать нарастанию тока. Для самоиндукции выполняется...
24985. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях. Частота и период колебаний 26 KB
  Электромагнитные колебания это колебания электрических и магнитных полей которые сопровождаются периодическим изменением заряда тока и напряжения. Простейшей системой где могут возникнуть и существовать электромагнитные колебания является колебательный контур. Таким образом в колебательном контуре будут происходить электромагнитные колебания изза превращения энергии электрического поля конденсатора Wэ = = CU2 2 в энергию магнитного поля катушки с током wm = LI2 2 и наоборот.
24986. Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования 48 KB
  Свойства электромагнитных волн. Английский ученый Джеймс Максвелл на основании изучения экспериментальных работ Фарадея по электричеству высказал гипотезу о существовании в природе особых волн способных распространяться в вакууме. Эти волны Максвелл назвал электромагнитными волнами.
24987. Волновые свойства света. Электромагнитная теория света 38.5 KB
  Электромагнитная теория света План ответа 1. Законы преломления и отражения света. Наиболее наглядно волновые свойства света обнаруживаются в явлениях интерференции и дифракции.
24988. Опыты Резерфорда по рассеянию α-частиц. Ядерная модель атома 23.5 KB
  Ядерная модель атома План ответа 1. Ядерная модель атома. Рассеяние αчастиц Резерфорд объяснил тем что положительный заряд не распределен равномерно в шаре радиусом 1010 м как предполагали ранее а сосредоточен в центральной части атома атомном ядре. Так ведут себя частицы имеющие одинаковый заряд следовательно существует центральная положительно заряженная часть атома в которой сосредоточена значительная масса атома.
24989. Квантовые постулаты Бора. Испускание и поглощение света атомами. Спектральный анализ 24.5 KB
  Спектр излучения или поглощения это набор волн определенных частот которые излучает или поглощает атом данного вещества. Сплошные спектры излучают все вещества находящиеся в твердом или жидком состоянии. Линейчатые спектры излучают все вещества в атомарном состоянии. Как у каждого человека свои личные отпечатки пальцев так и у атома данного вещества свой характерный только ему спектр.
24990. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике 28.5 KB
  Уравнение Эйнштейна для фотоэффекта и постоянная Планка. Применение фотоэффекта в технике Плав ответа 1. Законы фотоэффекта. Применение фотоэффекта.
24991. Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция, условия ее осуществления. Термоядерные реакции 26 KB
  Энергия связи ядра атома. Состав ядра атома. Энергия связи атомного ядра.