70501

Класс точности. Нормирование погрешностей

Доклад

Физика

Класс точности применяется для средств измерений используемых в технических измерениях когда нет необходимости или возможности выделить отдельно систематические и случайные погрешности оценить вклад влияющих величин с помощью дополнительных погрешностей.

Русский

2014-10-21

40 KB

6 чел.

Класс точности. Нормирование погрешностей

Установление рядов пределов допускаемых погрешностей позволяет упорядочить требования к средствам измерений по точности. Это упорядочивание осуществляется путем установления классов точности СИ. 

Класс точности СИ – обобщенная характеристика данного типа СИ, отражающая уровень их точности, выражаемая пределами допускаемой основной, а в некоторых случаях и дополнительных погрешностей, а также другими характеристиками, влияющими на точность. Класс точности применяется для средств измерений, используемых в технических измерениях, когда нет необходимости или возможности выделить отдельно систематические и случайные погрешности, оценить вклад влияющих величин с помощью дополнительных погрешностей. Класс точности позволяет судить о том, в каких пределах находится погрешность средств измерений одного типа, но не является непосредственным показателем точности измерений, выполняемых с помощью каждого из этих средств. Класс точности СИ конкретного типа устанавливают в стандартах технических требований или других нормативных документах. 

При выражении предела допускаемой основной погрешности в форме
 абсолютной погрешности класс точности в документации и на средствах измерения обозначается прописными буквами латинского алфавита или римскими цифрами. Чем дальше буква от начала алфавита, тем больше погрешность. Расшифровка соответствия букв значению абсолютной погрешности осуществляется в технической документации на средство измерения. 

Выражение класса точности через относительную и приведенную погрешности рассмотрено в предыдущем разделе. В настоящее время по отношению к современным средствам измерений понятие класс точности применяется довольно редко. В основном он чаще всего используется для описания характеристик электроизмерительных приборов, аналоговых стрелочных приборов всех типов, некоторых мер длины, весов, гирь общего назначения, манометров.
 

Примеры обозначение классов точности для различных форм выражения погрешности приведены в таблице.

Обозначение классов точности

Пределы допускаемой основной погрешности

Обозначения

Форма выражения погрешности

в документации

на приборе

γ = ± 1,5

Класс точности 1,5

1,5

Приведенная погрешность

δ = ± 0,5

Класс точности 0,5

0,5

Относительная погрешность, постоянная

δ = ± [ 0,02 + 0,01( xk/x –1)]

Класс точности 0,02/0,01

0,02/0,01

Относительная погрешность, возрастает с уменьшением х

В основе нормирования погрешностей средств измерений лежат следующие основные положения.

1. В качестве норм указывают пределы допускаемых погрешностей, включающие в себя систематические и случайные составляющие. Под пределом допускаемой погрешности понимается наибольшее значение погрешности средства измерений, при котором оно еще признается годным к применению. Обычно устанавливают пределы, т.е. зоны, за которую не должна выходить погрешность. Данная норма отражает то положение, что средства измерений можно применять с однократным считыванием показаний.

2. Порознь нормируют все свойства СИ, влияющие на их точность: отдельно нормируют основную погрешность, по отдельности – все дополнительные погрешности и другие свойства, влияющие на точность измерений. При выполнении данного требования обеспечивается максимальная однородность средств измерений одного типа, то есть близкие значения дополнительных погрешностей, обусловленных одними и теми же факторами. Это дает возможность заменять один прибор другим однотипным без возможного увеличения суммарной погрешности.

Пределы допускаемых погрешностей средств измерения применяются как для абсолютной, так и для относительной погрешности. 
Пределы допускаемой абсолютной погрешности устанавливают по формуле ∆ = ± а для аддитивной погрешности. Для мультипликативной погрешности они устанавливаются в виде линейной зависимости
∆ = ± (а + bх),
где х – показание измерительного прибора, а и b – положительные числа, не зависящие от х. 
Предел допускаемой относительной погрешности (в относительных единицах) для мультипликативной погрешности устанавливают по формуле 
δ = ∆ / х = ± c. 
Для аддитивной погрешности формула имеет вид: 
δ = ∆ / х = ± [ c + d ( xk / x – 1)] 
где xk — конечное значение диапазона измерений прибора; c и d - относительные величины. 
Первое слагаемое в этой формуле имеет смысл относительной погрешности при х = хk , второе — характеризует рост относительной погрешности при уменьшении показаний прибора. Пределы допускаемой приведенной погрешности (в процентах) следует устанавливать по формуле 
γ = 100∆ / xN = ± р
где xN – нормирующее значение; р - отвлеченное положительное число из ряда 1; 1,5; 2; 2,5; 4; 5; 6, умноженное на 10n ( n = 1, 0, -1, -2 и т.д.) 
Нормирующее значение принимается равным: конечному значению шкалы (если 0 находится на краю шкалы), сумме конечных значений шкалы (если 0 внутри шкалы), номинальному значению измеряемой величины, длине шкалы.


 

А также другие работы, которые могут Вас заинтересовать

18126. Предмет та задачі фізичної електроніки 246.27 KB
  Предмет та задачі фізичної електроніки Що таке фізична електроніка Що за розділ фізики Так от: це наука котра займається вивченням властивостей електронів та іонів при швидкостях набагато менших швидкості світла. Фізична електроніка вивчає рух електронів та іонів у в...
18127. Розподіл електронів в твердому тілі за енергіями 879.5 KB
  Розподіл електронів в твердому тілі за енергіями Спочатку цей розподіл було знайдено чисто експериментально Фермі та Діраком. Задача полягає в тому щоб знайти число електронів що мають енергії в інтервалі Е Е dE тобто знайти функціюзакон розподілу електронів за е
18128. Термоелектронна емісія (ТЕЕ) 160.77 KB
  Термоелектронна емісія ТЕЕ ТЕЕ є випромінювання електронів розжареними тілами. Джерело енергії збудження електронів теплова енергія гратки. Густина струму термоемісії для кожного тіла є універсальною функцією параметри якої залежать від природи цього тіла структ...
18129. Вплив зовнішнього електричного поля на термоемісію катоду 188.56 KB
  Вплив зовнішнього електричного поля на термоемісію катоду Для того щоб визначити струм емісії катода необхідно зібрати елементарну схему що містить вікуумний діод ВД й джерела живлення з вимірювальними приладами. Діод має пряморозжарюваний W катод 1 і анод 2. ...
18130. Вплив КРП на ВАХ дiоду 200.71 KB
  Вплив КРП на ВАХ дiоду На практицi зустрiчається декiлька випадкiв впливу КРП на ВАХ. Маємо вакуумний дiод у якого анод i катод виготовлено з одного матерiалу наприклад з вольфраму тобто еа=ек. В звязку з цим маємо таку картину. Рiвнi Фермi Eok=Eoa. Значить Vкрп=0. Ро
18131. Зниження роботи виходу плівкових катодів 179.1 KB
  Зниження роботи виходу плівкових катодів пояснюється таким чином. Розглянемо спочатку WCs катод. Як відомо у. Потенціал іонізації атому. Потенціальна діаграма системи WCs це має такий вигляд: На цьому рисунку адатом цезію знаходиться на великі
18132. Фотоелектронна емісія 247.05 KB
  Фотоелектронна емісія Фотоелектронна емісія або зовнішній фотоелектричний ефект це випромінювання електронів поверхнею твердого тіла або рідини під впливом падаючих на неї квантів світла. Фотоефект був відкритий Герцем у 1882 році. Осн...
18133. Автоелектронна емісія 449.19 KB
  Автоелектронна емісія Автоелектронною емісією називається емісія електронів яка обумовлена сильним електричним полем у поверхні твердого тіла. Цю емісію ще називають холодною емісією електростатичною емісією тунельною емісією. При розгляданні впливу на термо...
18134. Вплив електричного поля на поверхневу іонізацію (автоіонізація) 350.78 KB
  Вплив електричного поля на поверхневу іонізацію автоіонізація Експериментальні дослідження ПІ відразу показали що зовнішнє електричне поле якщо воно тягне іони тобто на катоді а на колекторі іонів поліпшує процес іонної емісії: ступінь поверхне...