70527

Классификация приборов непосредственной оценки

Доклад

Физика

В зависимости от возможных значений токов и напряжений в измеряемых цепях приборы непосредственной оценки подразделяют на микроамперметры, миллиампер метры, амперметры, килоамперметры, милливольтметры, вольтметры и киловольтметры.

Русский

2014-10-21

829.5 KB

6 чел.

Классификация приборов непосредственной оценки

Основной характеристикой прибора является система измерительного механизма – способ преобразования измеряемой электромагнитной величины в силу, перемещающую подвижную часть электроизмерительного прибора. Различают магнитоэлектрическую, электромагнитную, электродинамическую, ферродинамическую, электростатическую, термоэлектрическую и др. системы.

В зависимости от возможных значений токов и напряжений  в измеряемых цепях приборы непосредственной оценки подразделяют на микроамперметры, миллиампер метры, амперметры, килоамперметры, милливольтметры, вольтметры и киловольтметры.

Амперметры включают в цепь последовательно, вольтметры – параллельно участку цепи (нагрузке, источнику напряжения и т. д.).

Маркировка приборов

Чтобы получить представление об особенностях прибора, не изучая техническое описание и паспорт, на шкалу и частично на лицевую панель прибора наносят маркировку. В связи с этим на приборах, используя условные обозначения, указывают:

  •  род измеряемой величины (напряжение, ток, мощность, т. п.);
  •  систему и класс точности прибора;
  •  группу зависимости от условий эксплуатации (А – для работы в сухих отапливаемых помещениях; Б – в закрытых неотапливаемых помещениях; В1 – в полевых и В2 – в морских условиях);
  •  категорию защищенности от электрических и магнитных полей (I или II в зависимости от этих влияний с допускаемыми изменениями класса точности);
  •  стандарт, по которому изготовлен прибор;
  •  рабочее положение шкалы прибора;
  •  испытательное напряжение;
  •  номинальную частоту тока, если она не равна 50 Гц;
  •  номинальные ток и напряжение;
  •  номинальную температуру, если она не равна 20 °С;
  •  тип (шифр) прибора, год выпуска и заводской номер, фабричную марку завода-изготовителя.

В приложении А приведены условные обозначения, наносимые на лицевую панель приборов.

Приложение А

Обозначение принципа действия приборов

   

Обозначение рода тока

Примеры обозначения трехфазных ваттметров, варметров

и фазометров

Обозначение рабочего положения прибора

Обозначение класса точности, прочности изоляции и знака "Внимание!"


8. Электродинамический прибор

9. Электродинамический логометр

10. Электростатический прибор

11. Ферродинамический прибор

EMBED Visio.Drawing.6  

12. Ферродинамический логометр

EMBED Visio.Drawing.6  

13. Индукционный прибор

EMBED Visio.Drawing.6  

14. Индукционный логометр

EMBED Visio.Drawing.6  

1. Магнитоэлектрический прибор с подвижной рамкой

EMBED Visio.Drawing.6  

2. Магнитоэлектрический логометр с подвижными рамками

EMBED Visio.Drawing.6  

3. Магнитоэлектрический прибор с подвижным магнитом

EMBED Visio.Drawing.6  

4. Магнитоэлектрический логометр с подвижным магнитом

EMBED Visio.Drawing.6  

EMBED Visio.Drawing.6  

6. Электромагнитный логометр

5. Электромагнитный прибор

EMBED Visio.Drawing.6  

EMBED Visio.Drawing.6  

7. Электромагнитный поляризованный прибор

15. Магнитоиндукционный прибор

EMBED Visio.Drawing.6  

16. Вибрационный прибор (язычковый)

EMBED Visio.Drawing.6  

18. Биметаллический прибор

EMBED Visio.Drawing.6  

17. Тепловой прибор (с нагреваемой проволокой)

EMBED Visio.Drawing.6  

33. Постоянный ток

EMBED Visio.Drawing.6  

34. Переменный однофазный ток

EMBED Visio.Drawing.6  

35. Постоянный и переменный ток

EMBED Visio.Drawing.6  

36. Трехфазный ток (общее обозначение)

EMBED Visio.Drawing.6  

37. Трехфазный ток при неравномерной нагрузке фаз

EMBED Visio.Drawing.6  

38. Прибор с одноэлементным измерительным механизмом

EMBED Visio.Drawing.6  

39. Прибор с двухэлементным измерительным механизмом

EMBED Visio.Drawing.6  

40. Прибор с трехэлементным измерительным механизмом (для четырехпроводной цепи)

EMBED Visio.Drawing.6  

41. Горизонтальное положение шкалы

EMBED Visio.Drawing.6  

42. Вертикальное положение шкалы

EMBED Visio.Drawing.6  

43. Наклонное положение шкалы под определенным углом к горизонту, например, 300

EMBED Visio.Drawing.6  

44. Направление ориентировки прибора в магнитном поле Земли

EMBED Visio.Drawing.6  

51. Класс точности при нормировании погрешности в процентах от длины шкалы

EMBED Visio.Drawing.6  

52. Класс точности при нормировании погрешности от конечного значения диапазона измерений для приборов с односторонней шкалой, от суммы конечных значений рабочей части шкалы для приборов с двухсторонней шкалой или от разности конечного и начального значений для приборов с безнулевой шкалой

1,5

53. Класс точности при нормировании погрешности в процентах от данного показания

EMBED Visio.Drawing.6  

54. Измерительная цепь прибора выдерживает по отношению к корпусу напряжение 7 кВ

EMBED Visio.Drawing.6  

"Внимание!"

55. Смотри дополнительные указания в паспорте и инструкции по эксплуатации

EMBED Visio.Drawing.6  


 

А также другие работы, которые могут Вас заинтересовать

23097. Квантування електромагнітного поля. Фотони 87 KB
  Квантування електромагнітного поля. Ейнштейн першим звернув на це увагу і намагався теоретично обґрунтувати дискретність електромагнітного випромінювання. Ейнштейн показав що ймовірність мати енергію для електромагнітного випромінювання буде: . Для електромагнітного випромінювання: .
23098. Поширення світла в анізотропних середовищах. Дисперсія і поглинання 466 KB
  В анізотропному середовищі спостерігається подвійне заломлення променів зумовлене наявністю в них двох показників заломлення один з яких не залежить від напрямку поширення хвилі і відповідає одній поляризації а другий залежить від напрямку поширення і пов`язаний з іншою поляризацією. Введемо для ізотропного середовища показник заломлення. Для хвилі що поширюється в напрямку x коливання відбуваються в напрямку z то показник заломлення більше в напрямку z ніж для коливань в напрямку y. z напрямок при якому показники...
23099. Явище обертання площини поляризації падаючого світла в речовинах 96 KB
  Явище обертання площини поляризації падаючого світла в речовинах. Якщо лінійно поляризоване світло проходить через плоскопаралельний шар речовини то в деяких випадках площина поляризації світла виявляється повернутою відносно свого вихідного положення. Це явище називається обертанням площини поляризації або оптичною активністю. Кут поворота площини поляризації залежить від довжини хвилі.
23100. Квантування енергії лінійного гармонічного осцилятора 202.5 KB
  Тоді гамільтоніан для такої системи буде: Класичний гармонічний осцилятор має розвязки: і де А амплітуда ω частота δ початкова фаза коливань. Перетворимо це рівняння введемо безрозмірні величини та З урахуванням останнього рівняння Шредігера перепишеться як 1 Асимптотична поведінка розвязку рівняння 1 при х→∞: Тоді 2 причому uzобмежена на нескінченності. Шукаючи розвязок у вигляді степеневого ряду знаходимо рекурентну формулу для коефіцієнтів ряду: Розвязки можуть бути або парними або непарними тобто або...
23101. Хвилі де Бройля. Хвильові властивості частинок 5.03 MB
  Хвилі де Бройля. Тобто інколи відбувається прояв як хвилі інколи як частинки. Тоді можна отримати вираз для хвилі де Бройля. Оберемо напрям вздовж за напрям розповсюдження хвилі де фаза хвилі що пересувається у просторі з фазовою швидкістю що шукається з умови що переміщується так щоб фаза залишалась постійною.
23102. Принципова схема лазера. Властивості лазерного випромінювання. Типи лазерів та їх застосування 51.5 KB
  При падінні хвилі з власною частотою переходу системи: змінюються заселеності рівнів N1 i N2 кількість атомів в одиниці обєму що знаходяться на 1 та на 2 енергетичних рівнях відповідно. dN12=BN1dt ; кількість частинок що перейшли з 1 рівня на 2 dN21= AN2dt BN2dt кількість частинок що перейшли з 2 рівня на 1 де Акоеф. Крім того в стаціонарному режимі при умові термодинамічної рівноваги виконуються рівняння: N1N2=N=const кількість частинок в системі є сталою. В дворівневій системі не можна забезпечити умову N2 N1 бо навіть в...
23103. Рівняння Шредингера. Інтерпретація хвильової функції 49 KB
  Рівняння Шредингера. Для цього необхідне рівняння: 1. Рівняння повинно бути лінійним і однорідним хвиля задовольняє принц. Це рівняння Шредингера.
23104. Співвідношення невизначеності Гейзенберга, приклади його проявів 74.5 KB
  Нехай стан частинки опивується хв. Остаточно Співвідношення невизначеностей проявляється при будьякій спробі вимірювання точного положення або точного імпульса частинки. Виявляється що уточнення положення частинки впливає на те що збільшується неточність в значенні імпульса і навпаки. Часто втрачає зміст ділення повної енегрії частинкияк квантового обєкту на потенціальну і кінетичну .
23105. Сестринский процесс при холециститах 25.25 MB
  Воспаление желчного пузыря регистрируется почти у 10% населения планеты, причем в 3-4 раза чаще холециститом страдают женщины. Большинство людей не следят за своим рационом, ведут сидячий образ жизни.