70655

ОСНОВНЫЕ УРАВНЕНИЕ ДВИЖУЩЕГОСЯ ПОТОКА ЖИДКОСТИ И ГАЗА

Лекция

Физика

Используя основное уравнение молекулярно-кинетической теории газов можно установить взаимосвязь между параметрами состояния идеального газа в любом термодинамическом состоянии. Изменение хотя бы одного из параметров приводит к изменению остальных пара-метров.

Русский

2014-10-23

765.02 KB

18 чел.

1

ЛЕКЦИЯ 2.3 ОСНОВНЫЕ УРАВНЕНИЕ ДВИЖУЩЕГОСЯ ПОТОКА ЖИДКОСТИ И ГАЗА

План:

2.3.1 Уравнение состояния среды и взаимозависимость физических параметров потока

2.3.2 Уравнение неразрывности движущегося потока ( Уравнение Л. Эйлера)

2.3.3 Уравнения сохранения энергии движущегося газового потока

2.3.4 Уравнение баланса энергии подвижного потока (уравнение Д. Бернулли)

2.3.5 Практическое использование основных уравнений аэродинамики

2.3.1 Уравнение состояния потока и взаимозависимость физических параметров потока

Состояние газа, как рабочего тела, характеризуется определенными значениями па-раметров состояния: давлением (p), температурой (Т) и удельным объемом(w) или массо-вой плотностью(ρ).

Используя основное уравнение молекулярно-кинетической теории газов можно уста-новить взаимосвязь между параметрами состояния идеального газа в любом термодинами-ческом состоянии.

Изменение хотя бы одного из параметров приводит к изменению остальных пара-метров.

В общем виде связь между термодинамическими параметрами может быть представ-лена зависимостью: f (p,T,w,ρ)=0.

Зависимость, связывающая параметры состояния газа называется уравнением сос-тояния газа и имеет вид:

p*w=RТ     или    и     ρ*w = 1

где

p-давление газа, Па;

w-удельный объем, ;

Т-температура газа, 0К;

ρ-массовая плотность, ;

R=287,14 , газовая постоянная, характеризует природу конкретного газа и не зависит от параметров его состояния.

Уравнение получено путем объединения частных законов Бойля-Мариотта и Гей-Люссака в общий закон и оно получило название уравнения Клайперона-Менделеева.

Для определения состояния идеального газа достаточно знать только два его пара-метра (p и w,ρ) или (p и Т) или (w,ρ и Т) третий параметр определяется из уравнений:

Т=;  w=  ;  p=;  ρ=;

Решение уравнения упрощается, если один из параметров состояния газа сохраняет-ся постоянным:

1 Для изохорического процесса: w = const, p2 = p1*  

2 Для изобарического процесса: p = const, w2 = w1*  

3 Для изотермического процесса Т = const, p2 = p1*  

4 Для адиабатического процесса Q = 0; p2 = p1*( ;  w2 = w1*( ;  Т2 = Т1*(

Наибольший интерес представляет определение неизвестного параметра по двум другим известным параметрам, которые можно определить при помощи определенных инструментальных приборов. Например, при давлении p =760 мм. рт. ст. (101320 Н/м2) температура T=288Т, плотность воздуха согласна уравнению состояния равна:

=

2.3.2 Уравнение неразрывности подвижного потока (уравнение Л. Эйлера)

Уравнение неразрывности отражает условие сохранения массы движущегося потока жидкости или газа. Для вывода уравнения мысленно выделим в потоке жидкости или газа замкнутый объём в виде трубки тока:

Рис 2.3.1 Схема трубки тока движущегося потока

Уравнение неразрывности выведено на основании закона сохранения материи, уста-новленного в 1748 г. русским ученным М.В. Ломоносовым. Уравнение неразрывности бы-ло опубликовано Л. Эйлером в 1770 г. и представляет собой применение закона сохране-ния энергии к струйке газа.

Пусть в сечении “1-1” площадь  параметры состояния газа равны  За время через сечение проходит масса воздуха

Через сечения “2–2” проходит за своя масса воздуха .

Так как через боковую поверхность трубки тока воздух не просачивается, то через любое сечение трубки за одинаковое время проходит одинаковая масса воздуха.

         или

= const

Тогда для установившегося движения уравнение имеет вид:

,       или    S = const/

где

удельный расход газа;

При небольших скоростях прямолинейного движения воздуха сжимаемостью можно пренебречь=, тогда уравнение примет вид:

изический смысл уравнения: при малых скоростях движения воздуха уменьшение площади поперечного сечения потока вызывает увеличение скорости движения.

Отсюда

Из уравнения следует, что при дозвуковой скорости потока скорость движения газа в струйке обратно пропорционально площади поперечного сечения, т.е. при уменьшении площади поперечного сечения струйки скорость течения возрастает, и наоборот.

В случае движения с большой дозвуковой, трансзвуковой и сверхзвуковой скорос-тью, когда проявляется свойство сжимаемости , изменение скорости зависит не только от площади поперечного сечения, но и от изменения плотности. Тогда выражение примет вид:

При сверхзвуковой скорости потока вследствие особенностей изменения физических параметров плотность газа меняется быстрее, чем скорость. Поэтому для получения сверзвуковой скорости и ее увеличения необходимо расширять струйку, увеличивать ее площадь поперечного сечения по определенному закону. Непрерывное увеличение ско-рости потока от дозвуковой до сверхзвуковой возможно лишь в струйке, имеющей форму сопла Лаваля.

При больших скоростях потока на сжимаемость воздуха оказывает влияние не только скорость воздушного потока, но и скорость звука в потоке. В качестве критерия сжимаемости движущегося воздуха используется число Маха ., причем чем больше скорость воздушного потока, тем больше его сжимаемость.

Таким образом, уравнение постоянства расхода, являясь частным выражением зако-на сохранения материи применительно к струйке газа, связывает между собой скорость, плотность и площадь того поперечного сечения струйки, в котором рассматриваються эти характеристики.

V=                                            V=

Рис 2.3.2 Схема течения потока вздуха в сопле Лаваля

2.3.3 Уравнения сохранения энергии движущегося газового потока

Масса движущегося газа в любом сечении потока обладает тремя видами энергии:

  1.  внутренней энергией - U = cw*Т, ккал/ кг;
  2.  энергией давления - Еп = p*w, кгм/кг;
  3.  кинетической энергией-Ек = , кгм/кг

Рис 2.3.3 Схема сохранения энергий движущегося потока

Баланс энергии для элементарного объема газа согласно І –го закона термодинамики имеет вид:

где,

– внешнее тепло подводимое к 1 кг массы газа, ккал;

– теплосодержание газа (энтальпия), кгм/кг;

V – скорость движения частиц газа, м/с;

– робота совершаемая газом, кгм/кг.

Внешнее тепло, подводимое к частице газа расходуется на увеличение теплосодер-жания, увеличения кинетической энергии и выполнения внешней работы.

Так как скорости движения частиц газа достаточно большие, то тепло не успевает подводиться снаружи к газу (), а значит и внешняя работа газом не произво-дится (), тогда уравнение сохранения энергии примет вид:

= 0

После интегрирования выражения, получим уравнения:

i +  = const,= E

Сумма внутренней энергии и энергии давления газа называется теплосодержанием или энтальпией газа:

i = U + A*p*w,

где,

А – коеффициент эквиваленности подводимого тепла внешней работе,

А = , ккал/кгм;

Учитывая, что внутренняя энергия равна U = cw*T , а энергия давления равна

Еп = p*w, которая согласно уравнения состояния идеального газа также равна

Еп = R*T, то можно записать:

i = cw*T  + ART = (cw +  AR)*T

(cw +  AR) = cp, тогда 

i = cp*T  

Таким образом, при установившемся движении газа без подвода и отвода тепла со стороны и при невыполнения газом механической работы, сумма энтальпии и кинетичес-кой энергии в любом сечении потока сохраняется неизменной:

i +  = cp*T + const

Физический смысл уравнения: изменение кинетической энергии газа в основном происходит за счет изменения его теплосодержания.

2.3.4 Уравнение баланса энергии подвижного потока (уравнение Д. Бернулли)

Уравнения Бернулли является дополнением к закону сохранения энергии движущих-ся жидкостей и газов. Данный закон сформулировал известный ученный Даниил Бернулли в 1738 году. Выделим в установившемся потоке жидкости трубку тока. Пусть в сечении “1 – 1” площадью (), которое находится на высоте ( относительно базового уровня параметры потока равны:V1, p1, ρ1.

В сечении площадью на высоте  параметры газа . Допустим, что обмен энергии между потоком и окружающей средой не осуществляется: через неко-торое время (: жидкость из сечения ( ) переместиться на некоторое расстояние по трубке , а из сечения  – на расстояние равное

Согласно уравнения неразрывности потока через выделенные сечение потока за вре-мя  проходит одинаковая масса жидкости

Определим работу, которую совершают силы давления в жидкости. В сечении “1-1”

,

аналогично для сечения 2–2 

Рис 2.3.4 Схема сохранения енергии движущегося потока

Работа выполненная над объемом жидкости между сечениями «1 – 1» и «2 – 2» будет равняться

.

Это работа увеличивает энергию массы жидкости  при прохождении ею рас-стояния от сечения  к сечению

 

где

и энергия массы движущегося в сечениях ,.

Энергия массы газа состоит из кинетической энергии, потенциальной и внутренней энергии  

Кинетическая энергия характеризует способность выделенной массы газа выполнять работу при его торможении от исходной скорости до нулевой скорости =

Потенциальная энергия характеризуетэнергию силы веса и показывает какую робо-ту масса газу ( может выполнить при изменении высоты сечения потока газа ( от-носительно выбранного уровня

= .

Внутренняя энергия характеризует способность выделенной массы газа выполнить работу при изменении температуры:

 

где

-  теплоемкость газа при постоянном объеме.

Учитывая уравнения состояния газа     и газовую постоянною газа

, получим

,

тогда выражение внутренней энергии газа можно записать в виде:

*                  при  k=

где

k=  - показатель адиабаты ( для воздуха = 1,4).

Тогда уравнение энергии массы газа в общем виде можно записать:

 

поставив в уравнение , получим;

Учитывая уравнение неразрывности и сгруппировав величины с одинаковыми ин-дексами получим уравнение Д. Бернулли с учетом сжимаемости:

Так как в аэродинамике струйки газового потока находятся практически на одном уровне, то изменение энергии положения в уравнении можно не учитывать, т.е., таким образом можно считать, что

 

Тогда уравнение Д. Бернулли с учетом сжимаемости будет иметь вид:

При движении газа с малой дозовой скоростью сжимаемостью его можно пренеб-речь, т.е.  и можно считать что температура массыжидкости не меняется, а значит внутренняя энергия по всем сечениям потока постоянная

тогда уравнения Бернулли без учета сжимаемости примет вид

где

статическим давлением, Н/

- динамическое давление или скоростной напор.

В общем виде уравнение Д. Бернулли без учета сжимаемости имеет вид:

-                      полное давление

Физический смысл уравнения Бернулли состоит в том, что при установившемся дви-жении несжимаемого газа полное давление равно сумме статического и динамического давления и является величиной постоянной во всех сечениях одного и того же потока газа.

2.3.5 Практическое использование основных уравнений аэродинамики

Уравнения устанавливают очень важную для аэродинамики зависимость между ско-ростью потока, давлением в нем и основными газодинамическими параметрами газа.

1 Полное торможение потока

В случае полного торможения потока газа в сеченях кинетическая энергия газа пол-ностью превращается в потенциальную энергию давления.

Согласно уравнения Д. Бернулли:

, при  

Уравнение принимает вид:

       или           

Таким образом в случае полного торможения потока несжимаемого газа повышение давления  в месте торможения равняется скоростному напору, а давление заторможён-ного потока равно полному давлению

Рис 2.3.5 Схема полного торможения потока

2 Образование подъемной силы

На основании уравнения неразрывности и уравнения баланса энергии движущегося газа можно объяснить физическую сущность возникновения подъемной силы на обтекае-мом потоком газа теле.

Рис 2.3.6 Схема образования аэродинамической силы

При обтекании тела газовым потоком на верхней его поверхности скорость потока увеличивается из-за уменьшения площади сечения струек что приводит к уменьшению давления. На нижней поверхности, сужение струек может не происходить, и поэтому ско-рость течения не увеличивается, а значит давление не изменяется. Таким образом на обте-каемом теле возникает разность давлений, что приводит к возникновению подъемной си-лы Yа , направленной вверх.

3 Измерение скорости полета

На основании закона Д. Бернулли используется принцип изменения скорости полета летательного аппарата. Измерение скорости осуществляется при помощи приемника воз-душного давления (ПВД), состоящей из 2-х трубок: внутренней трубки 1, которая является приемником полного давления и внешней, которая является приемником стати-ческого давления:

Обе трубки соединены с указателем скорости 3,под действием разности давлений мембранная коробка 4 деформируется и через передаточный механизм передвигает стрел-ку прибора 5

отсюда                                        Vпр= ;

Рис 2.3.7 Схема измерения скорости воздушного потока

Скорость измеренная ПВД называется приборной скоростью ЛА. С увеличением вы-соты полета, в связи с уменьшением плотности воздуха показания прибора становится не-верным. Поэтому воздушная скорость ЛА  на некоторой высоте (H) будет несколько большей, чем скорость показываемая прибором. С этой целью для определения истинной воздушной скорости вводится поправка 1\Δ

        воздушная скорость

где

 


 

А также другие работы, которые могут Вас заинтересовать

81843. Технико–эксплуатационные характеристики железнодорожного транспорта 27.33 KB
  Массовость перевозок в сочетании с довольно низкой себестоимостью малые эксплуатационные расходы и достаточно высокой скоростью доставки; более короткий путь следования по сравнению с естественными путями водного транспорта. Относительные недостатки железнодорожного транспорта: ограниченная маневренность из-за привязки к колее; высокая первоначальная стоимость основных фондов: стоимость строительства 1 км однопутной линии примерно 10 млн.
81844. Особенности транспортного обслуживания городов 27.79 KB
  Для городского пассажирского транспорта важно соблюдение необходимого соответствия мощностей отдельных звеньев транспортной системы. Пассажиропотоки в часы пик определяют характер массовых передвижений и служат основой для определения потребности в подвижном составе при решении вопросов о провозной и пропускной способности транспорта и уличнодорожной...
81845. Себестоимость перевозок, особенности определения и различия по видам транспорта 27.43 KB
  Наибольшее влияние на нее оказывают следующие факторы: объем и дальность перевозок густота перевозок на 1 км линии грузоподъемность или пассажировместимость подвижного состава вагонов судов автомобилей автобусов самолетов и т. Особенно заметно повышение себестоимости грузовых перевозок на железнодорожном морском и речном транспорте. Повышение себестоимости перевозок обусловлено в основном повышением уровня заработной платы и оптовых цен на топливо подвижной состав машины оборудование и другие материалы.
81847. Основные свойства транспортного узла 26.03 KB
  Узлы играют важную роль в организации комбинированных перевозок и совершенствовании взаимодействия различных видов транспорта. В зависимости от хозяйственного профиля города можно выделить транспортные узлы обслуживающие: центры обрабатывающей промышленности центры добывающей промышленности многоотраслевые центры непромышленные и курортные центры. Классифицируются узлы и по числу взаимодействующих видов транспорта. Кроме того по расположению узлов в транспортной системе узлы бывают транзитные обслуживающие преимущественно транзитные...
81848. Значение транспорта в развитии экономики страны 26.12 KB
  Транспортный комплекс Казахстана включающий в себя железнодорожный автомобильный водный и воздушный транспорт сеть автомобильных дорог с твердым покрытием трубопроводный и городской электрический транспорт ежегодно в среднем перевозит около 400 млн.т грузов и свыше 750 млн. Транспортная система Казахстана обеспечивает перевозки в среднем в год 70 млн. угля 1415 млн.
81849. Автомобильный транспорт. Зарождение и развитие а/т, его роль в ЕТС. Достоинства и недостатки 27.23 KB
  Первый отечественный автомобиль с двигателем внутреннего сгорания создан в С. Выдающимся русским автоконструктором с мировым именем был Борис Григорьевич Луцкий который в начале 90х годов прошлого столетия спроектировал несколько двигателей внутреннего сгорания предназначавшихся для самодвижущихся экипажей но отечественная промышленность еще не была готова к их освоению. 1 по виду двигателя: внутреннего сгорания карбюраторные дизельные газобаллонные газотурбинные электрические солнечные 2 грузоподъемности: малый средний...
81850. Процессы взаимодействия в транспортных узлах 27 KB
  Основная масса грузовых и пассажирских перевозок осуществляется с участием 2 х и более видов транспорта. Практически вся нефть из трубопроводов передается на другие виды транспорта а автомобиль взаимодействует со всеми видами транспорта особенно велик его вес для пассажирских перевозок. Во взаимодействии различных видов транспорта должна возродиться ЕТС единая транспортная система. Взаимодействие различных видов транспорта заключается в слаженной и согласованной работе транспорта в общем перевозочном процессе.
81851. Железнодорожный транспорт. Достоинства и недостатки 27.17 KB
  Но в неё в силу природных условий входили вспомогательные субъекты – больницы школы общепит учреждения культуры и другие. В законодательном порядке определена государственная политика в области железнодорожного транспорта направленная на создание условий для удовлетворения потребностей населения и экономики страны в перевозках. Преимущества: быстрая доставка на большие расстояния; независимость от климатических условий; большая грузоподъёмность 34 тыс.