70688

Классификация оборудования для синтеза полимеров

Лекция

Производство и промышленные технологии

В промышленности чаще всего используют электрический привод в некоторых случаях можно применять паровой и гидравлический. приведен привод типа А соединение вала мешалки с валом редуктора продольно-разъемной муфтой.

Русский

2014-10-24

528.67 KB

12 чел.

Лекция 14.  Классификация оборудования для синтеза полимеров

Оборудованием называют технические устройства,  предназначенные для создания условий, обеспечивающих требуемые технологические параметры (температура, давление, перемешивание реакционной массы и т. д.). Основным аппаратом для синтеза полимеров является реактор. Реакторы, применяемые в технологии синтеза полимеров, отличаются большим разнообразием типов, форм, размеров и конструкций. По конструктивным признакам все реакторы можно объединить в следующие группы: реакционные котлы, автоклавы, трубчатые реакторы, горизонтальные реакторы, ленточные реакторы, колонные

реакторы, шнековые реакторы и др., конструкции которых будут представлены ниже.

Реакционные котлы

Реакторы с мешалками широко применяют для различных жидкофазных процессов. Такие реакторы выполняются в виде цилиндрических сосудов со съемными крышками. Компоненты реакции могут смешиваться перед поступлением в реактор (так называемое перемешивание в объеме), в последнем случае котлы снабжаются перемешивающимися устройствами (мешалками). Вязкие системы

перемешивают с помощью якорных и скребковых мешалок с малым числом оборотов, а вещества с небольшой вязкостью – с помощью турбинных мешалок.

Обогрев и охлаждение реагирующей массы в реакционном котле осуществляется с помощью рубашки (гладкие, змеевиковые, с вмятинами) или змеевика, помещенного внутрь реактора. На рис. 5.12 показана наиболее распространенная конструкция реактора с мешалкой и рубашкой. Реактор состоит из корпуса 7 с эллиптической крышкой 5, мешалки 13, рубашки 8, редуктора с электродвигателем 1. Отношение высоты к диаметру емкостных реакторов с мешалкой

обычно принимают в пределах 1…1,6. Применять более высокие аппараты нецелесообразно вследствие неудовлетворительного перемешивания по его высоте.

При работе с вязкими системами и суспензиями применяют реакторы с коническим днищем. Наряду со сварными реакторами некоторое применение находят чугунные эмалированные аппараты с мешалкой.

 

Рис. 2.1. Общая конструктивная

схема аппарата с мешалкой:

1 – корпус; 2 – рубашка; 3 – мешалка; 4 – мотор с редуктором

Привод мешалки

В промышленности чаще всего используют электрический привод, в некоторых случаях можно применять паровой и гидравлический. Наиболее распространен индивидуальный выносной привод с вертикальным и горизонтальным

расположением валов.

На рис. 2.2. приведен привод типа А – соединение вала мешалки с валом редуктора продольно-разъемной муфтой. Вследствие этого в приводе типа А опорой для вала является подшипник редуктора или подшипник редуктора и концевой подшипник вала мешалки, устанавливаемый внутри аппарата на днище.

Рис. 2.2. Привод (тип А слева) и схема колебаний вала (справа):

1– редуктор; 2 – продольно-разъемная муфта;

3 – стойка привода;

4 – уплотнение; 5 – опора привода;

6 – маслоуловитель; 7 – вал;

8– концевой подшипник

С точки зрения распределения нагрузок наиболее рациональны приводы с  концевыми подшипниками (рис. 2.3.), роль которых заключается в устранении крутильных колебаний консольного вала мешалки, являющихся следствием динамических нагрузок на вал от перемешиваемой среды. Крутильные колебания вызывают разнос подшипников и негативно воздействуют на сальник.

Концевой подшипник: 1 – вал; 2 – вращающаяся втулка;

3 – неподвижная втулка; 4 – съемная плита; 5 – стойка

Для обеспечения соосности двух втулок может применяться концевой подшипник (рис.2.4.), в котором обойма невращающейся втулки имеет шаровую поверхность, что дает возможность устанавливать ось этой втулки в нужном направлении.

Концевой подшипник с шаровой обоймой: 1 – вал;

2 – вращающаяся втулка; 3 – неподвижная текстолитовая

втулка; 4 – обойма

Мешалки

Перемешивание реакционной массы, пастообразных и вязких материалов осуществляется при помощи мешалок, которые по конструкции в зависимости от устройства лопастей разделяются на лопастные, листовые, якорные, рамные, турбинные, пропеллерные и специальные. Все они состоят из трех частей: вала, на котором закреплена мешалка, мешалки, являющейся рабочим элементом и привода, с помощью которого вал приводится в движение.

Рамные мешалки являются комбинацией простых лопастных мешалок с вертикальными и наклонными планками и применяются в случае больших объемов перемешиваемых вязких материалов (рис. 2.5.).

Рис. 2.5. Простые лопастные мешалки

Якорные мешалки используют для перемешивания очень вязких жидкостей, особенно если процесс сопровождается нагревом среды через стенки аппарата  (рис.2.6.). Из-за небольшого зазора между краями мешалки и стенки аппарата около последних возникает сильное турбулентное течение, препятствующее перегреванию жидкости и образованию на стенках осадков. При высокой вязкости жидкости мешалка снабжается добавочными горизонтальными и вертикальными

лопастями (рис. 2.6. б).

Рис. 2.6. Якорные мешалки

Планетарные мешалки (рис. 2.7.) применяются для перемешивания особо вязких продуктов. Она состоит из вала 1, проходящего через неподвижное зубчатое колесо

2. На валу 1 укреплено водило 3, ведущий вал 4, а на последнем зубчатое колесо 5,

сцепляющееся с неподвижным колесом 2 и лопасти мешалки 6. При вращении вала 1 водило 3 увлекает за собой вал 4 и колесо 5, которое катится по колесу 2, заставляя при этом вращаться лопасти мешалки 6 одновременно как вокруг оси вала 4, так и вокруг вала 1. Каждая точка лопасти описывает при этом сложную кривую, форма которой зависит от положения точки на лопасти. Так как скорость точки всегда направлена по касательной к траектории, то направление скорости точек

непрерывно меняется. В планетарных мешалках возникает довольно интенсивное

движение жидкости.

Пропеллерные мешалки имеют три или четыре лопасти, расположенные винтообразно (рис.2.8.). Пропеллерные мешалки применяют для перемешивания жидкостей, растворения, образования взвесей, проведения химических реакций в жидкой среде, образования маловязких эмульсий и гомогенизации больших объемов жидкости.

Рис. 2.8. Пропеллерная мешалка

 

Для получения большей скорости и большей кратности циркуляции перемешиваемой жидкости применяются диффузоры, представляющие собой цилиндрические или конические обечайки, встроенные соосно в аппарат (рис.2.9.)

Рис. 2.9. Мешалки: а – с диффузором; б – с диффузором и направляющими в аппарате

Диффузор обеспечивает циркуляцию жидкости в объеме аппарата (рис. 2.10.) и может служить дополнительной поверхностью теплообмена в случае его изготовления с двойными стенками.

Рис. 2.10. Схема циркуляции жидкости в аппарате с мешалкой

при наличии диффузора: 1 – направляющая лопасть;

2 – диффузор

Уплотнения вращающихся валов

Уплотнения служат для создания герметичности между неподвижными и подвижными деталями машин. В основном применяются следующие типы уплотняющих устройств: сальники с мягкими и твердыми уплотняющими набивками;

торцевые уплотнения; герметичный привод.

Сальниковые уплотнения

На рис. 2.11. приведен сальник - ответственный узел аппарата. Он состоит из корпуса, грундбуксы, нажимной втулки, сальниковой набивки и стягивающих шпилек. Уплотнение происходит прижатием сальниковой набивки к вращающемуся

валу. Грундбукса – предназначен направлять вал мешалки, то есть препятствовать его вибрации.

 

Рис 2.11. Сальник: 1 – корпус; 2 – нажимная втулка; 3 – набивка; 4 – упорное кольцо (грундбукса)

На рис. 2.12. приведен нормализованный сальник. В середине слоя сальниковой набивки имеется смазочное кольцо. Это кольцо обеспечивает равномерный подвод смазки по всему периметру вала. Для отвода тепла сальник снабжен охлаждающей рубашкой.

Рис. 2.12. Нормализованный сальник: 1 – корпус; 2 – рубашка; 3 – нажимная втулка; 4 – набивка; 5 – смазочное кольцо; 6 – упорное кольцо (грундбукса)

Для нормальной работы сальника необходимо, чтобы усилие прижатия нижних слоев набивки к валу равнялось давлению среды. Усилие прижатия набивки к валу действует в радиальном направлении, тогда как поджим набивки нажимной

втулкой производится в осевом направлении (рис. 2.13.).

Рис. 2.13. Схема работы сальника: 1 – вал; 2 – нажимная втулка;

3 – корпус

При использовании двойных сальников достигается более  надежное уплотнение. Газы или пары, прошедшие через набивку нижнего сальника, задерживаются набивкой верхнего сальника.

2.2.2. Торцевые уплотнения

Торцевые уплотнения состоят из 2-х колец – подвижного и неподвижного, которые прижимаются друг к другу по торцевой поверхности с помощью пружины.

Торцевое уплотнение для герметизации аппаратов представлено на рис. 2.14. Кольцо 2 получает вращение от вала через водило 4, состоящее из двух половинок, стягивающих вал, и через шпильки 3. Неподвижное кольцо 7 соединено с сильфоном. Тяги с пружиной дают возможность регулировать силу поджатия колец 2 и 7. Сильфон 8 компенсирует биение вала. Сильфон представляет собой тонкостенную латунную трубку с гофрированной поверхностью. Самый ответственный элемент торцевого уплотнения – пара трения. Материал, из которого она изготовлена, должен обладать износостойкостью и малым коэффициентом трения.

Используются следующие материалы: кислостойкая сталь – одно кольцо; углеграфит, бронза или фторопласт – другое кольцо. Фторопласт применяется только в случае небольших давлений и при невысоких скоростях пары трения, так как он обладает хладотекучестью. По конструкции торцевое уплотнение может быть внутренним и внешним, одинарным и двойным. Уплотнение, изображенное на рис. 2.14., является внешним.

Рис. 2.14. Торцовое уплотнение (внешнее):

1 – корпус;

2 – вращающееся кольцо; 3 – шпилька;

4 – водило; 5 – пружина;

6– тяга; 7 – неподвижное кольцо;

8 – сильфон

Двойное уплотнение (рис. 2.15.) имеет две пары трения и практически представляет собой два последовательных одинарных уплотнения. В двойном уплотнении между двумя парами трения помещается запирающая среда, предотвращающая утечки и отводящая тепло трения. Данные торцевые уплотнения применяют для герметизации валов аппаратов для перемешивания взрывоопасных, токсичных, пожароопасных, ядовитых и подобных им сред, работающих при избыточном давлении до 1,6 МПа или остаточном давлении не менее 0,0027 МПа и температуре от -20 до +50 ° С.

Рис. 2.15. Двойное торцевое уплотнение типа ТД:

1 - неподвижные уплотнительные кольца; 2 - подвижные уплотнительные кольца; 3 - пружина; 4 - корпус; 5 - встроенный опорный подшипник

Автоклавы

Это емкостные реакторы высокого давления. Они изготовляются стальными литыми, коваными или сварными. На выходе вала мешалки из крышки предусматривается уплотнение (торцевое) или используют двойное сальниковое уплотнение. На рис. 5.13 изображен стальной литой автоклав, рассчитанный на давление порядка 250 МПа и предназначен для полимеризации этилена по радикальному механизму.

Рис. 5.13. Реактор-автоклав с лопастной мешалкой:

1 – электродвигатель; 2 – корпус реактора; 3, 4 – крышки плоские; 5, 6 – полумуфты;

8 – обтюратор; 9 – рубашка; 10 – электродвигатель; 11 – предохранительная

мембрана; 12 – лопастные мешалки; 13 – перегородка

Полимеризатор-автоклав представляет собой сосуд, состоящий из двух частей – корпуса электродвигателя 1 и собственно корпуса реактора 2. Реактор имеет две крышки 3 и 4. Корпусы между собой и крышки с корпусами соединяются разъемными полумуфтами 5, 6 и 7. Уплотнение соединений осуществляют тремя металлическими кольцами – обтюраторами 8 со сферической уплотнительной поверхностью. Корпусы автоклава имеют три съемные гладкие рубашки 9. Электродвигатель 10 установлен в корпусе и работает в среде этилена. В средней части автоклава установлены две разрывные предохранительные мембраны 11.

Реакционную массу перемешивают четыре лопастные мешалки 12. Мешалки съемные, они обеспечивают работу автоклава по однозонному или двухзонному вариантам. На валу мешалки, которую используют для двухзонного процесса полимеризации, установлена перегородка 13. Сравнительно небольшой зазор между перегородкой и корпусом автоклава позволяет вести полимеризацию в верхней и

нижней зонах при различной температуре.


 

А также другие работы, которые могут Вас заинтересовать

73422. Дорожні огорожі 462 KB
  На небезпечних ділянках доріг з метою запобігання виїзду автомобілів за межі земляного полотна встановлюють спеціальні дорожні огородження мал. Розташування однобічних і двосторонніх утримуючих огороджень бічних і фронтальних для автомобілів: 1 узбіччя; 2 бічне однобічне огородження...
73423. Дорожні знаки як технічні засоби організації дорожнього руху 36 KB
  Дорожні знаки ставляться до технічних засобів організації дорожнього руху і є обов’язковою приналежністю всіх доріг і вулиць населених пунктів. Усі дорожні знаки діляться на вісім груп: попереджуючі знаки; знаки пріоритету; заборонні знаки; знаки що пропонують...
73424. Сигнальні стовпці та розмітка 302 KB
  Використання стовпців та розмітки Застосування і типи стовпців Вимоги до використання стовпців Вимоги до сучасної розмітки Дорожні стовпчики маркіровані светоотражающими елементами призначені для позначення узбіч автомобільних доріг відповідають гос.
73425. Штучні нерівності на дорозі 577.5 KB
  Довжина кожної нерівності повинна бути не менш ширини проїзної частини. Припустиме відхилення — не більш 0,2 м з кожної сторони дороги. На ділянці дороги для обладнання нерівностей повинен бути забезпечений водовідвід із проїзної частини дороги.
73426. Облаштування доріг об’єктами дорожнього сервісу 57 KB
  Транспортний процес не може здійснюватися без сучасних автомобільних доріг так само, як і без їхньої облаштованості об’єктами дорожнього сервісу. З кожним роком збільшується дальність як вантажних, так і пасажирських перевезень.
73427. Розміщення й планування майданчиків відпочинку, автобусних зупинок 372.5 KB
  Призначення майданчиків відпочинку та автобусних зупинок Норми проектування майданчиків відпочинку та автобусних зупинок Забезпечення інформацією учасників дорожнього руху У водіїв транспортних засобів при русі по дорогах поступово в міру стомлення збільшується час реакції...
73428. Проблеми збереження природного середовища при будівництві доріг 28.05 KB
  Умови проектування автомобільних доріг Екологія та автомобільні дороги Принципова схема прогнозованої екологічної оцінки проектованої автомобільної дороги Проблеми збереження природного середовища в її природній різноманітності й багатстві визначають сьогодні практично всі сторони життя...
73429. Еколгічна сумісність із навколишнім середовищем 29.5 KB
  На етапі прокладки траси майбутньої дороги особливу роль відіграє ландшафтне проектування що враховує не тільки вимоги земельного законодавства по вилученню земельних ділянок під будівництво дороги подолання контурних і висотних перешкод але й вимоги по захисту навколишнього середовища.
73430. Захист населення від екологічного забруднення придорожнього природного середовища 73.5 KB
  Технічні снігозахисні посадки захист від ерозії протиерозійне озеленення піщаних заметів пескозащитное озеленення сильних вітрів і курних бур; забезпечення безпеки руху й зорового орієнтування тобто вказівка напрямку дороги за межами видимості покриття підкреслення...