70705

Моделирование объектов автоматизации

Курсовая

Экономическая теория и математическое моделирование

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта (явления, процесса) его «образом» - математической моделью – и дальнейшем изучении модели с помощью реализуемых на компьютера...

Русский

2014-10-24

2.19 MB

19 чел.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОУ ВПО «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматизации и информационных технологий

Кафедра автоматизации производственных процессов

Моделирование объектов автоматизации

    Пояснительная записка

(АПП 000000.050.ПЗ)

Руководитель:

_____________ В.А. Устимец

                                           (подпись)

_________________ 2005г.

                              (оценка,дата)

Выполнил студент гр. 22-01

_____________ В.В. Лосев

                                    (подпись)

________________ 2005г.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОУ ВПО «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет автоматизации и информационных технологий

Учебная дисциплина: Моделирование объектов и систем управления

ЗАДАНИЕ

на курсовой проект

Тема: «Моделирование объектов автоматизации»

Студент: Лосев В.В. гр. 22-01

Дата выдачи:_____________  2005 г.

Срок выполнения: _________2005г.

Руководитель: Устимец В.А.

Реферат

В данной курсовой работе рассмотрены математические модели закрытой проточной емкости с вентилем на входе:

;

;

Адиабатический теплообменник – смеситель

переменного объёма:

;


Содержание

Введение..............................................................................................................….5

1.   Закрытая проточная емкость с вентилем на входе...........………………………………………….......................................…...6

1.1.Физическое описание………….……………………………………………...6                                                                                                                                     1.2   Уравнения баланса емкости………………………………………………...6

2. Моделирование теплообменных аппаратов.............………………………...10

2.1 Модель теплообменника – смесителя проточного типа……………..……11

2.1.1 Адиабатический теплообменник – смеситель

переменного объёма……………..………………………………………………12

 Заключение……………………………………………………………………...16

Список использованных источников.................................................................17
Введение

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта (явления, процесса) его «образом» - математической моделью – и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот метод конструирования и проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях. В то же время вычислительные эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам. На математических моделях выполняют контролируемые эксперименты в тех случаях, когда экспериментирование на реальных моделях практически невозможно из-за отсутствия последних или возникающей во время экспериментов опасности (сети энергоснабжения, химические производства).

Сегодня постановка вопроса о математическом моделировании какого-либо объекта порождает четкий план действий. Его можно условно разбить на три этапа: «модель-алгоритм-программа».

На первом этапе выбирается или строится прототип объекта, отражающий в математической форме важнейшие его свойства - законы, которым он подчиняется, связи, присущие его частям. Математическая модель и ее составляющие исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте.

Второй этап – выбор или разработка алгоритма для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые нужно произвести, чтобы найти искомые величины с заданной точностью.

На третьем этапе алгоритмы переводятся на язык ЭВМ в виде списка команд или объектов (для программ, использующих объектно-ориентированную модель программирования).

После соответствия модели исходному объекту, с ней проводятся разнообразные опыты, дающие все требуемые качественные и количественные свойства и характеристики объекта. Процесс моделирования сопровождается улучшением и уточнением всех звеньев модели.


1 Закрытая проточная емкость с вентилем на входе.

1.1 Физическое описание

 Принимаем, что гидравлическая емкость (трубопровод) (рис 1.1) имеет неправильную форму, тогда площадь поперечного сечения емкости f не постоянна и имеет некоторые значения f1 и f2. Входной поток движется по емкости сечением f1 поступает через вентиль В1 со скоростью 1. Выходной поток отводится через емкость большего сечения f2. Предполагается, что функция зависимости расхода через вентиль от перепада давлений известна.

 

Рисунок 1.1. Гидравлическая ёмкость (трубопровод).

1.2 Уравнения баланса емкости

Математическая модель проточной емкости с вентилем на входе содержит следующие уравнения:

- уравнение материального баланса, записанное относительно скорости изменения расхода жидкости в аппарате,

;

- уравнение расхода через вентиль

где f1, f2 –сечение трубопровода на входе и выходе, соответственно;

где 1, 2 –скорость движения жидкости в трубопроводе;

получаем, что

примем за вход X= f1 , за выход Y=2  и то, что 1 = const, f2= const

Т.о. дифференциальное уравнение примет вид:

;  

Т.о. передаточная функция примет вид:

;

где Та = V/Qном 

1.3 Математическая модель емкости.

Анализ математического описания показывает, что независимыми переменными являются давления 1, f2; неизвестные переменные, вычисляемые в процессе моделирования – f1, 2. Решение системы является единственным при заданных 2, f1.

Зададим начальные значения независимых переменных и построим математическую модель емкости в Simulink’е:

1= 0,695 м/с, f2=0,5 м2, V=150 м3, Qном = 0,23 м3

Настройки PID-регулятора:

P=150;  I=1;  D=100;

Рисунок 1.2. Основная модель системы. 

Рисунок 1.3. Формирующее звено.

Рисунок 1.4. Частотный привод крана. 

Рисунок 1.5. Модель PID - регулятора.

 Рисунок 1.6. Дифференциальное уравнение объекта.

 Рисунок 1.7. График зависимости Q(t).

2. Моделирование теплообменных аппаратов

Перемещение вещества обычно сопровождается переносом тепла, а также процессом теплообмена, который может происходить как минимум между двумя средами. Известны три механизма теплопередачи (излучение, теплопроводность, конвекция), для каждого из которых существует промышленные аппараты – теплообменники.

Теплообменники – смесители представляют собой объекты с сосредоточенными параметрами, гидродинамика которых описывается моделью идеального перемешивания.

Задача моделирования теплообменников смещения заключается в расчёте температур выходных потоков, а при моделировании трубчатых аппаратов определяются температурные профили каждого из потоков, участвующих в теплообмене. Основными исходными данными для математического моделирования являются геометрические размеры теплообменника, а также величины, определяющие физические свойства потоков (сред).

Наряду с упрощениями, касающимися гидродинамики (модели идеального перемешивания и вытеснения потоков), при моделировании теплообменников приняты следующие допущения:

1. Коэффициенты теплопередачи и теплоотдачи, плотности, теплоёмкости теплоносителей не зависят от температуры и принимаются постоянными в каждой точке объёма идеального перемешивания и по длине теплообменника идеального вытеснения;

2. Тепловое сопротивление разделяющей стенки считается сосредоточенным на внутренней и внешней поверхностях теплообмена;

3.      Температура разделяющей стенки усреднена;

4.      Объём потока теплоносителя не зависит от температуры.

Введём обозначения основных переменных и параметров, которые потребуются при выходе уравнений математического описания теплообменников различных типов:

- значение температуры –го теплоносителя при его поступлении в теплообменник (в случае трубчатого теплообменника – граничное условие);

- текущее значение температуры –го теплоносителя;

- объёмный расход –го теплоносителя;

- площадь свободного сечения теплообменника, через которую движется –тый теплоноситель;

      ,  - теплоёмкость единицы объёма смеси и –го теплоносителя, соответственно;

       - температура –го теплоносителя на выходе из ячейки перемешивания;

- объём зоны перемешивания;

2.1 Модель теплообменника – смесителя проточного типа

Рассмотрим некоторую обобщённую модель теплообменника – смесителя, в математическое описание которого входят уравнения теплового и материального балансов (рисунок 2.1). Аппарат имеет не менее двух входов для потоков жидкофазных теплоносителей (температуры  и , объёмные скорости  и ), начальная температура смеси , начальный объём . Найдём зависимости  и .

Рисунок 2.1 – Схема проточного теплообменника - смесителя

Уравнение материального баланса:

,       (2.1)

где

       .     (2.2)

Уравнение теплового баланса:

,    (2.3)

где

 .      (2.4)

- суммарный тепловой поток от источников тепла в объёме перемешивания.

.        (2.5)

Уравнения (2.1) – (2.5) являются математическими описанием теплообменника – смесителя; в зависимости от конкретного вида функций [уравнения (2.2), (2.4)] и характера источников тепла  [уравнение (2.5)] они используются для формирования различных моделей теплообменника.

2.1.1 Адиабатический теплообменник – смеситель

переменного объёма

Теплообмен с внешней средой отсутствует

.

Характеристика потоков в теплообменнике: ; ; ; ; .

Запишем уравнения балансов:

материального

,     (2.6)

теплового

.   (2.7)

Выражение для скорости изменения объёма (2.6) подставим в уравнение (2.7); после некоторых алгебраических преобразований будем иметь запись системы нелинейных дифференциальных уравнений в следующем виде:

;       (2.8)

,    (2.9)

где

,

;  ; .

Таблица 2.1 – Параметры объекта

    Теплоноситель 1

   Теплоноситель 2

Полученный раствор

Начальный объём

Т10 = 1000С

Т20 = 100С

Т = 300С

V(0)=10 M3

СР1 = 1,0 ккал/кгград

СР2 = 0,58 ккал/кгград

СР = 0,62 ккал/кгград

g1 = 30 м3/час

g2 = 25 м3/час

g = 20 м3/час

Вода

Метиловый спирт

Смесь

Настройки PID-регулятора:

P=50;  I=0.001;  D=60;

Рисунок 2.2 – Модель адиабатического теплообменника – смесителя переменного объёма (пакет MatLab_6.5)

Рисунок 2.3 – Уравнение материального баланса

Рисунок 2.4 – Уравнение теплового баланса

Рисунок 2.5 – Блок сравнения (блок регулирования)

Рисунок 2.6 – Электропривод ИМ (блок регулирования)

Рисунок 2.7 – Блок регулирования выходного значения

(температура нагреваемого раствора)

Рисунок 2.8. Модель PID - регулятора.

Рисунок 2.9 – График процесса регулирования (пакет MatLab_6.5)

Заключение

В выше перечисленных идеализированных моделях зависимость одних параметров от других выражается одним, реже двумя дифференциальными уравнениями первого порядка, решение которых можно довольно легко рассчитать численными методами в приложении Matlab’a – Simulinke. Нахождение решения более сложных реальных моделей – с учетом всех потерь - занимает гораздо больше как человеческого, так и машинного времени, но оправдывает себя в повседневной жизни, поскольку этим закладываются в модель сразу практически все необходимые параметры и задаются условия, в которых модель должна находиться в течение ее срока службы.


Список использованных источников

1. Закгейм А. Ю./ Введение в моделирование химико-технологических процессов. – 2-е изд., перераб. и доп. – М.: Химия, 1982. – (серия «Химическая кибернетика») 288 с., ил.

2. Кафаров В. В., Глебов М.Б./ Математическое моделирование основных процессов химических производств: Учебн. пособие для вузов. – М.: Высш. шк., 1991. – 400 с.: ил.

3. Основы идентификации и проектирования тепловых процессов и систем: Учебное пособие/ О. М. Алифанов, П. Н. Вабищев, В. В. Михайлов и др. – М.: Логос, 2001. – 400 с.: ил.

4. Самарский А. А., Михайлов А. П. Математическое моделирование: Идеи. Методы. Примеры. – 2-е изд., испр. – М.: испр. – М.: Физматлит, 2001. – 320 с.

5. Селиверстов В. М., Бажан П. И. Термодинамика, теплопередача и теплообменные аппараты: Учебник для институтов водн. трансп. – М. Транспорт, 1988. – 287 с.

6. Скурихин В. И. и др. Математическое моделирование. В.И. Скурихин, В.Б. Шифрин, В.В. Дубровский.  К.: Техника , 1983. –270 с., ил.- Библиогр.: с. 265 – 269.

7. Теория тепломассообмена: Учебник для технических университетов и вузов / С. И. Исаев, И. А. Кожинов, В. И. Кофанов и др.; Под ред. А. И. Леонтьева. – 2-е изд., испр. и доп. – М.: Изд-во МГТУ им. Н. Э. Баумана, 1997. – 683 с.


Лист

Изм

Лист

 №  документа

Подпись

Дата

АПП.000000.050.ПЗ

истов

3

Литераа

г

17

СибГТУ кафедра АПП

гр.22-01

Разработал    Лосев В.В.

Проверил            Устимец

Утв.

Изм.

Лист

№ докум.

Подпись

Дата

Лист

4

АПП.000000.050.ПЗ

АПП.000000.050.ПЗ

5

Лист

Дата

Подпись

№ докум.

Лист

Изм.

АПП.000000.050.ПЗ

7

Лист

Дата

Подпись

№ докум.

Лист

Изм.

АПП.000000.050.ПЗ

6

Лист

Дата

Подпись

№ докум.

Лист

Изм.

АПП.000000.050.ПЗ

9

Лист

Дата

Подпись

№ докум.

Лист

Изм.

АПП.000000.050.ПЗ

8

Лист

Дата

Подпись

№ докум.

Лист

Изм.


 

А также другие работы, которые могут Вас заинтересовать

10331. Психология общения. Педагогическое общение: структура, виды, функции, средства общения. Стили общения. Технология управления педагогическим общением 46 KB
  Психология общения. Педагогическое общение: структура виды функции средства общения. Стили общения. Технология управления педагогическим общением. Методы стимулирования общения поведения и деятельности школьников. Общение О. сложный многоплановый процесс устано...
10332. Взаимоотношения личности и группы как психолого-педагогическая проблема в отечественной и зарубежной теории и практике 51 KB
  Взаимоотношения личности и группы как психологопедагогическая проблема в отечественной и зарубежной теории и практике. Детский коллектив д.к. как объект и субъект воспитательного процесса психологическая структура коллектива педагогические условия его становления....
10333. Философские, психологические и педагогические проблемы духовного развития личности, ее мировоззрения, формирование личностного смысла научных и этических знаний 36.5 KB
  Философские психологические и педагогические проблемы духовного развития личности ее мировоззрения формирование личностного смысла научных и этических знаний. Ступени духовного роста человека. Духовное развитие личности ребенка в учебновоспитательном процессе в
10334. Нравственное воспитание как фундамент системы воспитательной работы. Задачи, содержание, методы нравственного воспитания в современных условиях 37 KB
  Нравственное воспитание как фундамент системы воспитательной работы. Задачи содержание методы нравственного воспитания в современных условиях. Моральные чувства их характеристика. Нравственное воспитание формирование системы моральнонравственных норм установ
10335. Трудовое воспитание, задачи, содержание и методы. Ушинский, Макаренко о роли труда в развитии личности. Профессиональное самоопределение 64.5 KB
  Трудовое воспитание задачи содержание и методы. Ушинский Макаренко о роли труда в развитии личности. Профессиональное самоопределение. Отечественные и зарубежные теории профессионального самоопределения Д. Сьюпер Э. Гинзберг Е.А. Климов И.С. Кон. Проф. ориентация и эк...
10336. Физическое воспитание. Понятие о здоровом образе жизни. Задачи, содержание, методы и формы ФВ в современной школе 36.5 KB
  Физическое воспитание. Понятие о здоровом образе жизни. Задачи содержание методы и формы ФВ в современной школе. Учет индивидуальнотипологических особенностей субъектов образовательного процесса в экологически неблагополучных регионах. Здоровьесберегающие технолог...
10337. Эмоционально-волевая сфера личности. Задачи, содержание и методы эстетического воспитания учащихся в современной школе 52 KB
  Эмоциональноволевая сфера личности. Задачи содержание и методы эстетического воспитания учащихся в современной школе. Воспитание эстетических чувств вкусов понятий идеалов; формирование умений навыков воплощения прекрасного в жизнь. Эмоциональные процессы – пси
10338. Воспитательная система: сущность, структура, функции, динамика. Взаимодействие дидактической и воспитательной подсистем школы 42 KB
  Воспитательная система: сущность структура функции динамика. Взаимодействие дидактической и воспитательной подсистем школы. Отечественные и зарубежные воспитательные системы В.А. Караковский А.А. Захаренко Р. Штайнер М. Монтессори. Проектирование психологически ко
10339. Семья и ее воспитательные возможности. Школа и семья как институты социализации. Проблемы современной семьи 60.5 KB
  Семья и ее воспитательные возможности. Школа и семья как институты социализации. Проблемы современной семьи. Психологическая характеристика стилей семейного воспитания. Модели семьи. Содержание формы и методы взаимодействия школы и семьи в целостном педагогическом про...