70732

Частотные преобразования дискретных фильтров

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель работы: Изучение практических методов синтеза дискретных фильтров нижних, верхних частот, полосовых и режекторных фильтров методом частотных преобразований.

Русский

2014-10-26

238.5 KB

3 чел.

Министерство общего и профессионального образования РФ

Марийский Государственный технический университет

Кафедра Информационных Систем

Частотные преобразования
дискретных фильтров

Лабораторная работа

по курсу «Методы и устройства
цифровой обработки сигналов»

для студентов специальности 22.01

Йошкар-Ола, 1997


Цель работы:
Изучение практических методов синтеза дискретных фильтров нижних, верхних частот, полосовых и режекторных фильтров методом частотных преобразований.

Введение

В практических задачах обработки сигналов и данных возникает потребность в самых разнообразных преобразованиях данных. Значительную часть таких преобразований можно рассматривать как линейные операции над спектром сигнала. Например, выделение медленно меняющейся стабильной компоненты сигнала заключается в усилении низкочастотных составляющих спектра и подавлении высокочастотных составляющих, т.е. с помощью фильтра нижних частот (ФНЧ); фильтр верхних частот (ФВЧ) позволяет выделить быстро меняющуюся компоненту сигнала; полосовой фильтр (ПФ) выделяет сигналы заданной области спектра; режекторный фильтр (РФ) подавляет сигналы заданной полосы частот.

Наиболее эффективный метод синтеза фильтров верхних частот, полосовых и режекторных фильтров состоит в использовании двухэтапной процедуры синтеза синтеза:

рассчитывается прототип — нормированный фильтр нижних частот с заданной формой аппроксимации амплитудно-частотной характеристики (АЧХ);

из фильтра-прототипа с помощью соответствующего частотного преобразования формируется ненормированный фильтр с заданной формой АЧХ.

Под нормированным фильтром понимают такой фильтр, у которого:

Частотные преобразования

Рассмотрим преобразование вида:

   (1)

где q, m - целые числа,  и  - комплексно-сопряженные константы. Полагая, что , можно получить, что:

Отсюда следует, что:

или  при

или  при      (2)

или  при

Следование, преобразование  отображает точки z-плоскости на z’-плоскость таким образом, что:

внешняя область единичного круга  отображается во внешнюю область

единичная окружность  отображается в единичную окружность

внутренняя область единичного круга  отображается во внутреннюю область

Рассмотрим теперь нормированных ФНЧ, характеризуемый передаточной функцией H(z) с полосой пропускания от 0 до . Применяя рассмотренное преобразование, можно получить выражение для передаточной функции фильтра на z’-плоскости:

       (3)

Свойства (2) преобразования (1) гарантируют, что полюса преобразованного фильтра будут располагаться внутри единичного круга, если они были расположены внутри единичного круга у исходного фильтра. Это означает, что устойчивый ФНЧ преобразуется в устойчивый фильтр.

Из свойств (2) также следует, что если:

для некоторой полосы частот  на z-плоскости, то

для одной или нескольких полос соответствующих частот на z’-плоскости. Поэтому одна полоса пропускания (задержания) исходного ФНЧ будет переходить в одну или несколько частот пропускания (задержания) фильтра с передаточной функцией .

Количество полос пропускания и их границы определяются конкретными значениями параметров в преобразовании (1).

Преобразование ФНЧ в ФНЧ

Пусть исходный ФНЧ требуется преобразовать в ФНЧ с другой полосой пропускания. Это означает, что полоса пропускания  плоскости z (рис.1) должна перейти в полосу частот  на плоскости z’. Нетрудно заметить, что один оборот вектора  должен соответствовать одному обороту вектора . Поэтому m=1 и преобразование приобретает вид:

Рис. 1. Преобразование ФНЧ в ФНЧ. Жирной линией выделены полосы пропускания фильтров.

Для определения остальных коэффициентов заметим, что в точках А и А , а в точках С и С . Поэтому получаем:

Решение этой системы уравнений дает , т.е. а - вещественная величина. Итак, преобразование принимает вид:

        (4)

В точках В и В для частот  и  соответственно имеем:

Решение этого уравнения дает:

      (5)

Таким образом, преобразование полностью определено и позволяет переходить от одного ФНЧ к ФНЧ с другой полосой пропускания.

Преобразование ФНЧ в ФВЧ

В результате аналогичных рассуждений нетрудно получить следующие формулы преобразования:

        (6)

      (7)

Преобразование ФНЧ в РФ

На рис. 2 показано соотношение полос пропускания исходного ФНЧ и требуемого режекторного фильтра. Нетрудно заметить, что число полос пропускания режекторного фильтра должно удваиваться относительно НЧ-прототипа. Это становится возможным, если m=2.

Рис. 2. Преобразование ФНЧ в РФ. Жирной линией выделены полосы пропускания фильтров.

Поэтому преобразование имеет вид:

Для определения коэффициентов следует рассмотреть точки А и А, где , В и В, а также D и D’. Составляя уравнения в этих точках и решая их, определяют формулы преобразования:

       (8)

      (9)

     (10)

Преобразование ФНЧ в ПФ

Аналогичные рассуждения позволяют получить формулы преобразования:

       (11)

      (12)

     (13)

Таким образом, частотное преобразование фильтра-прототипа в фильтр с требуемой формой АЧХ заключается в подстановке (3), где конкретный вид функции  определяется формулами (4)-(13) в зависимости от требуемого вида преобразования.


Порядок выполнения работы

Используя в качестве фильтра-прототипа ФНЧ Чебышева-1 преобразовать его в ФВЧ и новый ФНЧ. Преобразования выполнить для значений :

совпадающих с частотой среза фильтра-прототипа

отличающихся на 20% от частоты среза фильтра-прототипа

Исследовать АЧХ полученных фильтров. Сделать выводы об их форме, уровнях полос пропускания и задержания, ширине переходной полосы в сравнении с фильтром-прототипом.


 

А также другие работы, которые могут Вас заинтересовать

57912. Квадратные неравенства 195 KB
  Урок изучения и первичное закрепление нового материала с элементами повторения и закрепления ранее изученного. Возможные варианты: Через проектор на экране появляется тема Слайд 1;3 Квадратные неравенства Один из учащихся вслух читает текст на экране Учащиеся записывают определение в тетрадь.
57913. Розв’язування вправ на тему «Додавання та віднімання звичайних дробів» 503 KB
  Обладнання: сигнальні картки роздруковані усні вправи екологічне пано з відповідями до вправ картки так ні картки з індивідуальними завданнями для учнів картки з додатковими вправами.
57914. Функція. Область визначення і область значень функції. Способи задання функції 52.5 KB
  Мета: освітня: формувати поняття функціональної залежності аргументу області визначення та області значення функції; розглянути способи задання функцій; формувати уміння знаходити звязок з раніше вивченим переносити набуті знання в нові ситуації...
57915. Розкладання многочленів на множники 119 KB
  Обладнання: Картки з індивідуальним завданням; картки для усних і письмових робіт; таблиці: Формули скороченого множення Квадрати одноцифрових чисел Куби одноцифрових чисел Відшукай висловлення про математику.
57916. США у 1877 – 1900 роки 40 KB
  Мета: Ознайомити учнів з особливостями соціально-економічного розвитку США та основними напрямками зовнішньої політики; Розвивати навички роботи в парах уміння логічно мислити та робити висновки встановлювати причиннонаслідкові звязки; Формувати уміння роботи з картою...
57917. Великі вчені та їх внесок в розвиток світової науки 113 KB
  Перевіримо назви секторів показує на сектори учні називають їх англійською мовою Слайди: Трикутники М: Вирішіть тестові завдання оберіть правильну відповідь та дізнайтесь прізвище великого англійського вченого.
57918. Розв’язування задач на відсотки 126 KB
  Мета: актуалізувати знання учнів щодо визначення відсотка від числа і числа за відсотком; удосконалити уміння учнів розв’язувати текстові задачі на відсотки різними методами. Економічна соціалізація учнів.
57919. Використання формул скороченого множення для розкладання многочленів на множники 47.5 KB
  Мета: домогтися усвідомлення учнями того факту що вивчені формули скороченого множення застосовуються для розкладання на множники многочленів певного виду...
57920. Вікова періодизація людини (зрілий, похилий і старечий вік). Феномен життя і смерті 104 KB
  Індивідуальна робота робота учнів по картках Встановити відповідність вікової періодизації людини: Назва вікового періоду Віковий період у роках новонароджені...