7078

Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка

Лабораторная работа

Информатика, кибернетика и программирование

Цель работы: Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависим...

Русский

2013-01-14

121 KB

12 чел.

Цель работы:

Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависимости напряжения uC(t) и тока iC(t) в емкости в RC-цепи при заряде и разряде конденсатора, а также зависимости тока iL(t) и напряжения uL(t) на индуктивности при подключении и отключении источника постоянного напряжения.

Переходные процессы в -цепях

Рис.1 RC-схема заряда емкости

Таблица 1

Заряд емкости

uC(0+), В

uC пр, В

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

0

5

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

0

5

62,5·10-3

300·10-3

                     t, мс                                                                            t, мкс

Продолжение табл. 1

iC(0+),мA

iC пр,мA

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

10

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

10

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

                               

Постоянная времени  для RC–цепи вычисляется как .   

Проанализировав формулы и графики, видим, что напряжение заряда конденсатора нарастает плавно по экспоненте от 0 до напряжения источника U, а ток заряда изменяется в момент коммутации скачком до значения .

Рис.2. RC-схема разряда емкости

Таблица 2

Разряд емкости

uC(0+),В

uC пр

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

5

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

5

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

Продолжение табл. 2

iC(0+),мA

iC пр,мA

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

-10

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

-10

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

Постоянная времени для RC–цепи вычисляется как .   

 

По графикам тока и напряжения разряда конденсатора видно, что напряжение разряда снижается по экспоненте от  до 0, а ток разряда изменяется в момент коммутации скачком до значения   .

При расчете переходных процессов в -цепях в качестве независимой переменной выбирают uC. Затем также составляют дифференциальное уравнение для заданной -цепи, решение которого с учетом начальных условий для uC(0) и определяет закон изменения напряжения на емкости.

Знак "–" в уравнении для тока говорит о том, что ток разряда направлен противоположно опорному направлению напряжения UС в емкости.

Переходные процессы в RL-цепях

Рис.3. RL-схема при подключении к источнику

Таблица 3

RL-цепь, подключаемая к источнику

iL(0+), мA

iL пр, мA

τ, мкс

tпп, мкс

Е=5В

R=500 Ом

L=20 мГн

0

10

40

200

Е=5В

R=500 Ом

L=10 мГн

0

10

20

100

                                                                               t, мкс

Продолжение табл. 3

uL(0+),В

uL пр

τ, мкc

tпп, мкc

Е=5В

R=500 Ом

L=20 мГн

5

0

40

200

Е=5В

R=500 Ом

L=10 мГн

5

0

20

100

 t, мкс t, мкс

Постоянная времени для RL–цепи  вычисляется как  .                 

;

.

Построив графики этих процессов, мы видим, что ток нарастает плавно по экспоненте от 0 до величины U/R, а напряжение на индуктивности сначала совершает скачок до величины U, затем плавно падает до нуля, подчиняясь экспоненциальному закону.

Рис.4. RL-схема, отключаемая от источника

Таблица 4

RL-схема, отключаемая от источника

iL(0+),мA

iL пр,мA

τ,мкc

tпп,мкc

Е=5В

R=500 Ом

L=20 мГн

0

10

40

200

Е=5В

R=500 Ом

L=10 мГн

0

10

20

100

 

 t, мкс t, мкс

Продолжение табл. 4

uL(0+),В

uL пр

τ, мкс

tпп, мкс

Е=5В

R=500 Ом

L=20 мГн

5

0

40

200

Е=5В

R=500 Ом

L=10 мГн

5

0

20

100

 

 t, мкс t, мкс

Постоянная времени для RL–цепи  вычисляется как   .                 

;

.

Выводы:

Из графиков и формул следует, что изменение величины индуктивности в RC-цепях и емкости в RL-цепях меньшую сторону, приводит к уменьшению длительности переходных процессов и снижению величины постоянной времени процесса (). Чем больше , тем больше длительность переходного процесса.

То есть, изменяя величины емкостей, индуктивностей или сопротивлений, можно изменять постоянную времени переходного процесса и, тем самым, его скорость и длительность.

Переходные напряжения и токи при внезапных переключениях в цепях с одним реактивным элементов (L или С) изменяются от значения  до значения . Из теории переходных процессов известно, что эти изменения происходят по закону экспоненты, что мы и увидели на полученных графиках.

Защита:

 Задача 1.

Дана схема разряда конденсатора и значения Е=4 В и С=6 мкФ. Каким нужно выбрать  сопротивление R в цепи разряда конденсатора, чтобы через 1 мс после отключения цепи напряжение на конденсаторе уменьшилось в е раз.

Решение:

Используем для определения R формулу:

В данном случае степень е должна быть равна «-1» при t =1 мс. Отсюда: R =166,7 Ом. Тогда:

t = 1 мс     и       .

 Задача 2.

Дана схема заряда конденсатора и значения R=350 Ом и С=4 мкФ. Задать значение ЭДС, при которой скачок тока через конденсатор в момент его подключения будет равен 1 мА.

Решение:

Воспользуемся формулой:

t = 0

 

Задача 3. 

Дана RL–схема, подключаемая к источнику, график тока в индуктивности и значения Е=4 В, R=310 Ом, и L=8 мГн. Изменить величину индуктивности так, чтобы длительность переходного процесса стала меньше.

Решение:

При уменьшении величины индуктивности в RL–схемах происходит уменьшение длительности переходного процесса, следовательно, при любом значении L < 8 мГн длительность переходного процесса станет меньше.


E

C

R

E

C

R

E

L

R

E

R

R

L


 

А также другие работы, которые могут Вас заинтересовать

24991. Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция, условия ее осуществления. Термоядерные реакции 26 KB
  Энергия связи ядра атома. Состав ядра атома. Энергия связи атомного ядра.
24992. Механическое движение Относительность движения, Система отсчета, Материальная точка, Траектория. Путь и перемещение. Мгновенная скорость. Ускорение. Равномерное и равноускоренное движение 33 KB
  Мгновенная скорость. Скорость векторная физическая величина характеризующая быстроту перемещения тела численно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Промежуток времени считается достаточно малым если скорость в течении этого промежутка не менялась. Измеряют скорость спидометром.
24993. Взаимодействие тел. Сила. Второй закон Ньютона 39 KB
  Сила. Сила. В простейших случаях взаимодействия количественной характеристикой является сила. Сила причина ускорения тел по отношению к инерциальной системе отсчета или их деформации.
24994. Импульс тела. Закон сохранения импульса в природе и технике 137.5 KB
  Импульс тела. Простые наблюдения и опыты доказывают что покой и движение относительны скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того находилось ли тело в покое или двигалось изменение скорости его движения может происходить только при действии силы т. в результате взаимодействия с другими телами.
24995. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость 52.5 KB
  Вес тела. Вес тела перегрузки. Исаак Ньютон выдвинул предположение что между любыми телами в природе существуют силы взаимного притяжения. гравитационная постоянная равна силе с которой притягиваются два тела по 1 кг на расстоянии 1 м.
24996. Превращение энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс 38.5 KB
  Свободные и вынужденные колебания. Свободные колебания. Вынужденные колебания.
24997. Основные этапы становления информационного общества. Информационные ресурсы государства, их структура. Образовательные информационные ресурсы 75.5 KB
  Информационные ресурсы государства их структура. Образовательные информационные ресурсы. Развитие новых информационных технологий и их быстрое проникновение во все сферы жизни породило новое направление в современной информатике социальная информатика включающее в себя следующую проблематику: информационные ресурсы как фактор социальноэкономического и культурного развития общества; закономерности и проблемы становления информационного общества; развитие личности в информационном обществе; информационная культура; информационная...
24998. Клавиатура (Keyboard) 31.69 KB
  Принцип действия клавиатуры Основным элементом клавиатуры являются клавиши. Сигнал при нажатии клавиши регистрируется контроллером клавиатуры и передается в виде так называемого скэнкода на материнскую плату. На материнской плате ПК для подключения клавиатуры также используется специальный контроллер. Когда скэнкод поступает в контроллер клавиатуры инициализируется аппаратное прерывание процессор прекращает свою работу и выполняет процедуру анализирующую скэнкод.
24999. Принцип работы модемов 62.47 KB
  Современные модемы обеспечивают гораздо большую скорость передачи данных. Применяемые в них протоколы передачи данных и коррекции ошибок обеспечивают надежную связь даже на не очень хороших телефонных линиях. В процессе передачи компьютерных данных по большинству линий связи выполняется двойное их ' преобразование: поток данных из компьютера побайтно преобразуется в последовательность отдельных бит которая далее превращается в сигнал при годный для передачи по телефонным линиям. Принимаемые данные претерпевают обратное преобразование: из...