7078

Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка

Лабораторная работа

Информатика, кибернетика и программирование

Цель работы: Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависим...

Русский

2013-01-14

121 KB

12 чел.

Цель работы:

Изучение и компьютерное моделирование переходных процессов, возникающих при коммутациях в цепях первого порядка, содержащих сопротивление и емкость либо сопротивление и индуктивность. В лабораторной работе необходимо исследовать зависимости напряжения uC(t) и тока iC(t) в емкости в RC-цепи при заряде и разряде конденсатора, а также зависимости тока iL(t) и напряжения uL(t) на индуктивности при подключении и отключении источника постоянного напряжения.

Переходные процессы в -цепях

Рис.1 RC-схема заряда емкости

Таблица 1

Заряд емкости

uC(0+), В

uC пр, В

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

0

5

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

0

5

62,5·10-3

300·10-3

                     t, мс                                                                            t, мкс

Продолжение табл. 1

iC(0+),мA

iC пр,мA

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

10

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

10

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

                               

Постоянная времени  для RC–цепи вычисляется как .   

Проанализировав формулы и графики, видим, что напряжение заряда конденсатора нарастает плавно по экспоненте от 0 до напряжения источника U, а ток заряда изменяется в момент коммутации скачком до значения .

Рис.2. RC-схема разряда емкости

Таблица 2

Разряд емкости

uC(0+),В

uC пр

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

5

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

5

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

Продолжение табл. 2

iC(0+),мA

iC пр,мA

τ, мс

tпп, мс

Е=5В

R=500 Ом

С=0,25 мкФ

-10

0

0,125

0,6

Е=5В

R=500 Ом

С=0,125 мкФ

-10

0

62,5·10-3

300·10-3

                                    t, мс                                                                       t, мкс

Постоянная времени для RC–цепи вычисляется как .   

 

По графикам тока и напряжения разряда конденсатора видно, что напряжение разряда снижается по экспоненте от  до 0, а ток разряда изменяется в момент коммутации скачком до значения   .

При расчете переходных процессов в -цепях в качестве независимой переменной выбирают uC. Затем также составляют дифференциальное уравнение для заданной -цепи, решение которого с учетом начальных условий для uC(0) и определяет закон изменения напряжения на емкости.

Знак "–" в уравнении для тока говорит о том, что ток разряда направлен противоположно опорному направлению напряжения UС в емкости.

Переходные процессы в RL-цепях

Рис.3. RL-схема при подключении к источнику

Таблица 3

RL-цепь, подключаемая к источнику

iL(0+), мA

iL пр, мA

τ, мкс

tпп, мкс

Е=5В

R=500 Ом

L=20 мГн

0

10

40

200

Е=5В

R=500 Ом

L=10 мГн

0

10

20

100

                                                                               t, мкс

Продолжение табл. 3

uL(0+),В

uL пр

τ, мкc

tпп, мкc

Е=5В

R=500 Ом

L=20 мГн

5

0

40

200

Е=5В

R=500 Ом

L=10 мГн

5

0

20

100

 t, мкс t, мкс

Постоянная времени для RL–цепи  вычисляется как  .                 

;

.

Построив графики этих процессов, мы видим, что ток нарастает плавно по экспоненте от 0 до величины U/R, а напряжение на индуктивности сначала совершает скачок до величины U, затем плавно падает до нуля, подчиняясь экспоненциальному закону.

Рис.4. RL-схема, отключаемая от источника

Таблица 4

RL-схема, отключаемая от источника

iL(0+),мA

iL пр,мA

τ,мкc

tпп,мкc

Е=5В

R=500 Ом

L=20 мГн

0

10

40

200

Е=5В

R=500 Ом

L=10 мГн

0

10

20

100

 

 t, мкс t, мкс

Продолжение табл. 4

uL(0+),В

uL пр

τ, мкс

tпп, мкс

Е=5В

R=500 Ом

L=20 мГн

5

0

40

200

Е=5В

R=500 Ом

L=10 мГн

5

0

20

100

 

 t, мкс t, мкс

Постоянная времени для RL–цепи  вычисляется как   .                 

;

.

Выводы:

Из графиков и формул следует, что изменение величины индуктивности в RC-цепях и емкости в RL-цепях меньшую сторону, приводит к уменьшению длительности переходных процессов и снижению величины постоянной времени процесса (). Чем больше , тем больше длительность переходного процесса.

То есть, изменяя величины емкостей, индуктивностей или сопротивлений, можно изменять постоянную времени переходного процесса и, тем самым, его скорость и длительность.

Переходные напряжения и токи при внезапных переключениях в цепях с одним реактивным элементов (L или С) изменяются от значения  до значения . Из теории переходных процессов известно, что эти изменения происходят по закону экспоненты, что мы и увидели на полученных графиках.

Защита:

 Задача 1.

Дана схема разряда конденсатора и значения Е=4 В и С=6 мкФ. Каким нужно выбрать  сопротивление R в цепи разряда конденсатора, чтобы через 1 мс после отключения цепи напряжение на конденсаторе уменьшилось в е раз.

Решение:

Используем для определения R формулу:

В данном случае степень е должна быть равна «-1» при t =1 мс. Отсюда: R =166,7 Ом. Тогда:

t = 1 мс     и       .

 Задача 2.

Дана схема заряда конденсатора и значения R=350 Ом и С=4 мкФ. Задать значение ЭДС, при которой скачок тока через конденсатор в момент его подключения будет равен 1 мА.

Решение:

Воспользуемся формулой:

t = 0

 

Задача 3. 

Дана RL–схема, подключаемая к источнику, график тока в индуктивности и значения Е=4 В, R=310 Ом, и L=8 мГн. Изменить величину индуктивности так, чтобы длительность переходного процесса стала меньше.

Решение:

При уменьшении величины индуктивности в RL–схемах происходит уменьшение длительности переходного процесса, следовательно, при любом значении L < 8 мГн длительность переходного процесса станет меньше.


E

C

R

E

C

R

E

L

R

E

R

R

L


 

А также другие работы, которые могут Вас заинтересовать

9220. Патофизиология лейкопоэза 28.04 KB
  Патофизиология лейкопоэза Костный мозг находится во всех плоских костях, головках трубчатых костей. Стволовые клетки. Имеет 3 класса: полипотентная стволовая клетка. Относительно унипотентная - клетки предшественницы лимфопоэза и ми...
9221. Патофизиология эритропоэза 27.36 KB
  Патофизиология эритропоэза ОЦК: у женщин - 6,5-7% от массы тела у мужчин 7-7,5% Гематокрит: 0,36-0,46 - соотношение между клеточной и жидкой частью крови Объем циркулирующей крови: в пределах нормы - нормоволемия, при уменьшении...
9222. Анемии Анемии вследствие нарушения кровообразования 27.46 KB
  Анемии Анемии вследствие нарушения кровообразования Железодефицитные анемии. Причины дефицита железа: менструальные потери, лактации, беременность, растущий ребенок, подросток, поражение желчно-кишечного тракта. Проявления сидеропении Синдром сидеро...
9223. Опухолевый рост типический патологический процесс 27.25 KB
  Опухолевый рост Опухоль (новообразование) - типический патологический процесс. Возникает под действием канцерогена. Проявляется патологическим разрастанием структурных элементов ткани, не связанным с общим обменом веществ. Характеризуется атипизмом ...
9224. Стадии канцерогенеза (патогенез опухолей) 24.15 KB
  Стадии канцерогенеза (патогенез опухолей) Инициация (мутация) - превращение здоровой клетки в опухоль Промоция Опухолевая прогрессия (если опухоль злокачественная) Гемобластозы Правила опухолевой прогрессии Фулдаса-Воробьев...
9225. Воспаление - типический патологический процесс. 28.01 KB
  Воспаление Воспаление - типический патологический процесс. Возникает в ответ на действие патогенных (флогогенных) факторов Проявляется в идее комплекса местных и общих реакций, сформировавшихся в ходе эволюции в качестве защитных ме...
9226. Местные (кардиальные) признаки воспаления 28.84 KB
  Местные (кардиальные) признаки воспаления Жар (calor) - связан с притоком теплой артериальной крови в очаг воспаления, изменение обмена веществ в самом очаге воспаления, в связи с повреждением мембраны разобщается окислительно фосфорилировани и...
9227. Лихорадка (Febris) 30.48 KB
  Лихорадка (Febris) Термин лихорадка один из самых древних, раньше обозначал любое повышение температуры тела. Современные представления стали возможны благодаря нескольким учениям: Учение Мечникова о воспалениях - изучал в эволюционном пл...
9228. Иммунопатология Иммунодефицитные состояния 28.42 KB
  Иммунопатология Иммунодефицитные состояния Иммунитет - комплекс клеточных и гуморальных механизмов, способных противостоять нарушениям генного аппарата организма, т.е. система, обеспечивающая индивидуальность и целостность организма. Действие и...