7081

Нелинейные резистивные элементы

Лабораторная работа

Математика и математический анализ

Нелинейные резистивные элементы Цель работы: Изучение степенной (полиномиальной) и кусочно-линейной аппроксимаций вольт-амперных характеристик (ВАХ) нелинейных резистивных элементов. Изучение спектрального состава тока, протекающего через нелинейный...

Русский

2013-01-14

105 KB

39 чел.

Нелинейные резистивные элементы

Цель работы:

Изучение степенной (полиномиальной) и кусочно-линейной аппроксимаций вольт-амперных характеристик (ВАХ) нелинейных резистивных элементов. Изучение спектрального состава тока, протекающего через нелинейный элемент, под воздействием гармонического напряжения, при разных типах аппроксимации его ВАХ.

Рис.1. Вольт-амперная характеристика диода и его изображение (обозначение)

Таблица 1

Полиномиальная аппроксимация

 

 

I0

mA

Im1

mA

Im2

mA

Im3

mA

Полином

первой

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3,2

1,8

0

0

Полином

второй

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3

2,1

0,2

0

Полином

третьей

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3

2,2

0,2

0

               

а)                                                                                          б)

Рис.2.  Графики для полинома первой степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

График полинома первой степени:   

представляет собой прямую , параллельную оси абсцисс, и наклонную прямую  с коэффициентом наклона , смещенную по оси абсцисс на величину . Регулируя величины ,  и , можно перемещать аппроксимирующую прямую вниз, вправо и влево и менять ее наклон.

Для определения амплитуд гармоник тока подставим в выражение для напряжения, приложенного к нелинейному элементу :  .

Сравнивая это выражение с рядом Фурье

,

видим, что ;  ;  . Таким образом, при аппроксимации ВАХ полиномом 1-ой степени ток содержит кроме постоянной составляющей I0 только основную (первую) гармонику, совпадающую по частоте с приложенным гармоническим напряжением.

                 

а)                                                                                              б)

Рис.3.  Графики для полинома второй степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

График полинома второй степени  содержит в дополнение к графику полинома первой степени квадратичную параболу , смещенную по оси абсцисс на величину . Квадратичный член служит для аппроксимации слабой нелинейности ВАХ параболического типа.

             

а)                                                                                        б)

Рис.4.  Графики для полинома третей степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

Для описания нелинейности ВАХ высокого порядка используется полином третьей степени , в котором добавляется так называемая кубическая парабола , смещенная по оси абсцисс на величину .

Состав спектра тока в нелинейном элементе при аппроксимации ВАХ степенным полиномом определяется степенью полинома и его коэффициентами.

Определить коэффициенты, , ... , полинома можно различными способами. Наиболее распространенным способом является интерполяция (метод выбранных точек), при которой коэффициенты , , ...   находятся из равенства значений полинома и аппроксимируемой ВАХ в выбранных точках (узлах интерполяции).

, ,    ,  .

Таблица 2

Кусочно-линейная аппроксимация

I0

mA

Im1

mA

Im2

mA

Im3

mA

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

2,4

2,8

0,2

0,1

а)                                                                         б)

Рис.5.  Графики для кусочно-линейной аппроксимации

при Uо =5В, Um =5В, Uотс = 3,5В и S = 1,54 мА/В:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

а)                                                                                            б)

Рис.6.  Графики для кусочно-линейной аппроксимации

при Uо =2В, Um =6В, Uотс = 3В и S = 1,43 мА/В:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

Спектр тока при кусочно-линейной аппроксимации ВАХ зависит от угла отсечки. В тех случаях, когда нелинейный элемент работает как вентиль: есть ток или нет тока, используют кусочно-линейную аппроксимацию ВАХ:

График тока при этом имеет вид косинусоидальных импульсов с отсечкой. Половина той части периода в радианах (или градусах), в течение которой протекает ток, называется углом отсечки и обозначен буквой .

При  напряжение . Отсюда,

  и  .

Последнее равенство показывает, что угол отсечки можно изменить, меняя напряжение смещения , амплитуду гармонического сигнала  или выбирая параметр  аппроксимирующей функции.

Периодическую последовательность импульсов тока можно разложить в ряд Фурье:

.

Постоянная составляющая и амплитуды гармоник тока вычисляются по формуле:

,   k = 0, 1, 2, 3, ... ,

Выводы:

Из рис. 2 – 4 видно, что с увеличением степени полинома при полиномиальной аппроксимации, ВАХ аппроксимации приближается к реальной ВАХ, и при полиноме третьей степени значения ВАХ аппроксимации практически равны значениям реальной ВАХ. Поэтому, погрешность аппроксимации может быть тем меньше, чем больше число варьируемых параметров, входящих в аппроксимирующую функцию ( например, чем выше степень аппроксимирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция). Но при этом растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи.

Из анализа кусочно-линейной аппроксимации видно, что ее целесообразней использовать при больших амплитудах гармонического напряжения, подводимого к нелинейному элементу, когда нелинейный элемент работает как вентиль: есть ток или нет тока.

Количество гармоник в спектре тока равно степени полинома, описывающего нелинейность ВАХ. Постоянная составляющая и амплитуды четных гармоник определяются коэффициентами полинома при четных степенях, а амплитуды нечетных гармоник – коэффициентами полинома при нечетных степенях.

Амплитуды спектральных составляющих тока в нелинейном элементе при кусочно-линейной аппроксимации его ВАХ зависят от угла отсечки. Количество гармоник при этом бесконечно большое. Чем меньше угол отсечки (чем уже импульс), тем медленнее убывают амплитуды гармоник тока.

  

Защита:

Задача № 1.

Дан график проходной характеристики нелинейного элемента и значения U0 = 8 В и Um = 1 В входного сигнала, по которым построен график u(t). Выбрать тип аппроксимации ВАХ и определить параметры аппроксимирующей функции: напряжение отсечки и крутизну характеристики при кусочно-линейной аппроксимации либо степень полинома и узлы интерполяции при степенной аппроксимации.

Решение:

Аппроксимировать (т.е. описывать аналитически) нужно только тот участок ВАХ, по которому перемещается рабочая точка.

Определив максимум Umax=U0+Um  и минимум Umin=U0-Um  изменения напряжения на ВАХ мы видим, что данный нелинейный участок ВАХ, можно описать, используя полином второй степени (он имеет в своем составе квадратичную параболу). Выбираем узлами интерполяции:

Полученная  ВАХ аппроксимации совпадает с реальной ВАХ, на том участке, где происходит изменение напряжения смещения. Графики формы тока для реальной ВАХ и для аппроксимированной совпадают, как и графики спектра амплитуд тока.

 

Задача № 2.

Дан график проходной характеристики нелинейного элемента и значения U0 =1 В и Um = 1 В входного сигнала, по которым построен график u(t). Выбрать тип аппроксимации ВАХ и определить параметры аппроксимирующей функции: напряжение отсечки и крутизну характеристики при кусочно-линейной аппроксимации либо степень полинома и узлы интерполяции при степенной аппроксимации.

Решение:

Определив максимум Umax=U0+Um   и минимум Umin=U0-Um   изменения напряжения на ВАХ мы видим, что нелинейность рассматриваемого участка ВАХ минимальна – значит данный участок ВАХ можно принять за линейный. Для аппроксимации используем полином первой степени (представляет собой прямую , параллельную оси абсцисс, и наклонную прямую  с коэффициентом наклона , смещенную по оси абсцисс на величину ). Выбираем узлами интерполяции:

Полученная  ВАХ аппроксимации совпадает с реальной ВАХ, на том участке, где происходит изменение напряжения смещения. Графики формы тока для реальной ВАХ и для аппроксимированной совпадают, как и графики спектра амплитуд тока.

Задача № 3.

Дана проходная ВАХ нелинейного элемента и значение напряжения смещения U0=5В. Выбрать амплитуду гармонического воздействия так, чтобы в спектральном составе была одна гармоническая составляющая.

Решение:

Для определения амплитуд гармоник тока подставим в выражение для напряжения, приложенного к нелинейному элементу :  .

Сравнивая это выражение с рядом Фурье

,

видим, что ;  ;  . Таким образом, при аппроксимации ВАХ полиномом 1-ой степени ток содержит кроме постоянной составляющей I0 только основную (первую) гармонику, совпадающую по частоте (f=0,1Гц) с приложенным гармоническим напряжением.

Получаем: Um=0,1 В

i, мА

u, B


 

А также другие работы, которые могут Вас заинтересовать

20986. ВЗАИМОДЕЙСТВИЕ ПРИКЛАДНЫХ ПРОГРАММ С ПОМОЩЬЮ ПРОТОКОЛОВ ЭЛЕКТРОННОЙ ПОЧТЫ И ПРОТОКОЛОВ ПРИКЛАДНОГО УРОВНЯ 353.5 KB
  None; } } ФУНКЦИИ ПРИЕМА ОТВЕТА ОТ СЕРВЕРА protected string Receive { string reply = ; byte[] buffer = new byte[1024]; int ret = socket.Receivebuffer; while ret 0 { reply = Encoding.GetStringbuffer 0 ret; if IsCompletereply break; ret = socket.Receivebuffer; } return reply; } protected bool IsCompletestring reply { string[] parts = reply.
20987. Знакомство с языком разметки html, серверным программированием на языке PHP, а также основой работы с СУБД 509.5 KB
  Основные задачи сайта: Популяризация сериала Звёздные врата́: Атланти́да в сети интернет. Решение задачи Для создания сайта распишем основные этапы: Этапы создания сайта: Построение будущей структуры сайта Заказ дизайна Вёрстка Интеграция с PHP Запуск сайта на сервере Реализация Построение будущей структуры сайта Регистрация и авторизация для использования функций сайта пользователь обязан зарегистрироваться используем базу данных Главная краткий экскурс в историю Актеры и герои список актеров используем базу данных...
20988. Взаимодействие прикладных программ с помощью транспортных протоколов сети Интернет 862.5 KB
  Необходимо создать приложение (клиент) , который мог бы отправлять сообщения серверу при помощи транспортных протоколов (TCP и UDP). Клиент должен содержать файлы настроек для возможности задания порта и IP адреса сервера.
20989. Разработка сайта 285.5 KB
  FTPHostHOST USER PASSWORD создается соединение с сервером file_dir file_name = os.splitFILE print 'try downlo ad s' FILE if host.isdirfile_dir and host.isfileFILE: проверяется существование файла print 'file is existing download to:' DEST_DIRfile_name host.
20990. Цифрові рекурсивні фільтри 81.21 KB
  КРЕМЕНЧУК 2011 Мета: одержання практичних навичок із синтезу рекурсивних фільтрів Завдання Визначити параметри рекурсивного фільтра відповідно до варіанту навести передавальну функцію фільтра комплексну та у zзображеннях рівняння сигналу на виході фільтра та побудувати частотні характеристики фільтра. Розрахунок РЦФ в пакеті Mathcad Вихідні дані Визначення нормованих цифрових частот: Визначення порядку фільтра Фільтр 21 порядку розрахувати важко тому візьмемо фільтр 4 порядку Визначення передавальної функції цифрового...
20991. Цифрові нерекурсивні фільтри 154.13 KB
  КРЕМЕНЧУК 2011 Мета: набуття практичних навичок із синтезу нерекурсивних фільтрів низької та високої частоти смугового та режекторного фільтрів. Порядок виконання роботи Реалізація фільтру низьких частот: Реалізація фільтру високих частот: Реалізація смугового фільтру: Реалізація режекторного фільтру: Висновок: На даній практичній роботі були здобуті практичні навички із синтезу нерекурсивних фільтрів низької та високої частоти смугового та режекторного фільтрів.
20992. Розробка цифрових нерекурсивних та рекурсивних фільтрів в LabVIEW 146.2 KB
  Розміщуємо на блокдіаграмі експрес ВП DFD. Classical Filter Design Functions → Addons → Digital Filter Design → Filter Design → DFD Classical Filter Design Функції → Додаткові → Проектування цифрових фільтрів → Проектування фільтрів → DFD Класична розробка фільтрів. Рисунок 1 Конфігурація FIR ФНЧ Розміщуємо на блокдіаграмі експрес ВП DFD Filter Analysis Аналіз фільтру Functions → Addons → Digital Filter Design → Filter Analysis → DFI Filter Analysis Функції → Додаткові → Проектування цифрових фільтрів → Аналіз фільтрів →...
20993. Дослідження загальної процедури цифрових фільтрів в LabVIEW 240.66 KB
  розміщуємо три горизонтальні повзункові регулятори Horizontal Pointer Slid' Controls → Express → Numeric Control → Horizontal Pointer Slide Елементи керування → Експрес → Цифровий контроль → Горизонтальний повзунковий регулятор для налаштування частоти сигналів; три графіки осцилограми Waveform Graph для відображення вхідного і відфільтрованого сигналів у часовому і спектральному зображенні. На закладці Scale Шкала змінюємо максимальне значення шкали частоти Найквіста на 4000 Гц у всіх трьох елементах і на закладці Data Range Діапазон...
20994. Синтез цифрових фільтрів в MatLab 418.96 KB
  Баттерворда Режекторний Фільтр: Рисунок 1.1 АЧХ Рисунок 1.2 ФЧХ Рисунок 1.3 АФЧХ Рисунок 1.