7081

Нелинейные резистивные элементы

Лабораторная работа

Математика и математический анализ

Нелинейные резистивные элементы Цель работы: Изучение степенной (полиномиальной) и кусочно-линейной аппроксимаций вольт-амперных характеристик (ВАХ) нелинейных резистивных элементов. Изучение спектрального состава тока, протекающего через нелинейный...

Русский

2013-01-14

105 KB

40 чел.

Нелинейные резистивные элементы

Цель работы:

Изучение степенной (полиномиальной) и кусочно-линейной аппроксимаций вольт-амперных характеристик (ВАХ) нелинейных резистивных элементов. Изучение спектрального состава тока, протекающего через нелинейный элемент, под воздействием гармонического напряжения, при разных типах аппроксимации его ВАХ.

Рис.1. Вольт-амперная характеристика диода и его изображение (обозначение)

Таблица 1

Полиномиальная аппроксимация

 

 

I0

mA

Im1

mA

Im2

mA

Im3

mA

Полином

первой

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3,2

1,8

0

0

Полином

второй

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3

2,1

0,2

0

Полином

третьей

степени

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

3

2,2

0,2

0

               

а)                                                                                          б)

Рис.2.  Графики для полинома первой степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

График полинома первой степени:   

представляет собой прямую , параллельную оси абсцисс, и наклонную прямую  с коэффициентом наклона , смещенную по оси абсцисс на величину . Регулируя величины ,  и , можно перемещать аппроксимирующую прямую вниз, вправо и влево и менять ее наклон.

Для определения амплитуд гармоник тока подставим в выражение для напряжения, приложенного к нелинейному элементу :  .

Сравнивая это выражение с рядом Фурье

,

видим, что ;  ;  . Таким образом, при аппроксимации ВАХ полиномом 1-ой степени ток содержит кроме постоянной составляющей I0 только основную (первую) гармонику, совпадающую по частоте с приложенным гармоническим напряжением.

                 

а)                                                                                              б)

Рис.3.  Графики для полинома второй степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

График полинома второй степени  содержит в дополнение к графику полинома первой степени квадратичную параболу , смещенную по оси абсцисс на величину . Квадратичный член служит для аппроксимации слабой нелинейности ВАХ параболического типа.

             

а)                                                                                        б)

Рис.4.  Графики для полинома третей степени:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

Для описания нелинейности ВАХ высокого порядка используется полином третьей степени , в котором добавляется так называемая кубическая парабола , смещенная по оси абсцисс на величину .

Состав спектра тока в нелинейном элементе при аппроксимации ВАХ степенным полиномом определяется степенью полинома и его коэффициентами.

Определить коэффициенты, , ... , полинома можно различными способами. Наиболее распространенным способом является интерполяция (метод выбранных точек), при которой коэффициенты , , ...   находятся из равенства значений полинома и аппроксимируемой ВАХ в выбранных точках (узлах интерполяции).

, ,    ,  .

Таблица 2

Кусочно-линейная аппроксимация

I0

mA

Im1

mA

Im2

mA

Im3

mA

Реальная

ВАХ

3

2,2

0,2

0

Аппроксим.

ВАХ

2,4

2,8

0,2

0,1

а)                                                                         б)

Рис.5.  Графики для кусочно-линейной аппроксимации

при Uо =5В, Um =5В, Uотс = 3,5В и S = 1,54 мА/В:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

а)                                                                                            б)

Рис.6.  Графики для кусочно-линейной аппроксимации

при Uо =2В, Um =6В, Uотс = 3В и S = 1,43 мА/В:

а - графики формы тока (зеленого цвета для реальной ВАХ,

синего цвета  для аппроксимированной);

б - графики спектра амплитуд тока, протекающего через диод

(зеленого цвета для реальной ВАХ, синего цвета  для аппроксимированной).

Спектр тока при кусочно-линейной аппроксимации ВАХ зависит от угла отсечки. В тех случаях, когда нелинейный элемент работает как вентиль: есть ток или нет тока, используют кусочно-линейную аппроксимацию ВАХ:

График тока при этом имеет вид косинусоидальных импульсов с отсечкой. Половина той части периода в радианах (или градусах), в течение которой протекает ток, называется углом отсечки и обозначен буквой .

При  напряжение . Отсюда,

  и  .

Последнее равенство показывает, что угол отсечки можно изменить, меняя напряжение смещения , амплитуду гармонического сигнала  или выбирая параметр  аппроксимирующей функции.

Периодическую последовательность импульсов тока можно разложить в ряд Фурье:

.

Постоянная составляющая и амплитуды гармоник тока вычисляются по формуле:

,   k = 0, 1, 2, 3, ... ,

Выводы:

Из рис. 2 – 4 видно, что с увеличением степени полинома при полиномиальной аппроксимации, ВАХ аппроксимации приближается к реальной ВАХ, и при полиноме третьей степени значения ВАХ аппроксимации практически равны значениям реальной ВАХ. Поэтому, погрешность аппроксимации может быть тем меньше, чем больше число варьируемых параметров, входящих в аппроксимирующую функцию ( например, чем выше степень аппроксимирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция). Но при этом растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи.

Из анализа кусочно-линейной аппроксимации видно, что ее целесообразней использовать при больших амплитудах гармонического напряжения, подводимого к нелинейному элементу, когда нелинейный элемент работает как вентиль: есть ток или нет тока.

Количество гармоник в спектре тока равно степени полинома, описывающего нелинейность ВАХ. Постоянная составляющая и амплитуды четных гармоник определяются коэффициентами полинома при четных степенях, а амплитуды нечетных гармоник – коэффициентами полинома при нечетных степенях.

Амплитуды спектральных составляющих тока в нелинейном элементе при кусочно-линейной аппроксимации его ВАХ зависят от угла отсечки. Количество гармоник при этом бесконечно большое. Чем меньше угол отсечки (чем уже импульс), тем медленнее убывают амплитуды гармоник тока.

  

Защита:

Задача № 1.

Дан график проходной характеристики нелинейного элемента и значения U0 = 8 В и Um = 1 В входного сигнала, по которым построен график u(t). Выбрать тип аппроксимации ВАХ и определить параметры аппроксимирующей функции: напряжение отсечки и крутизну характеристики при кусочно-линейной аппроксимации либо степень полинома и узлы интерполяции при степенной аппроксимации.

Решение:

Аппроксимировать (т.е. описывать аналитически) нужно только тот участок ВАХ, по которому перемещается рабочая точка.

Определив максимум Umax=U0+Um  и минимум Umin=U0-Um  изменения напряжения на ВАХ мы видим, что данный нелинейный участок ВАХ, можно описать, используя полином второй степени (он имеет в своем составе квадратичную параболу). Выбираем узлами интерполяции:

Полученная  ВАХ аппроксимации совпадает с реальной ВАХ, на том участке, где происходит изменение напряжения смещения. Графики формы тока для реальной ВАХ и для аппроксимированной совпадают, как и графики спектра амплитуд тока.

 

Задача № 2.

Дан график проходной характеристики нелинейного элемента и значения U0 =1 В и Um = 1 В входного сигнала, по которым построен график u(t). Выбрать тип аппроксимации ВАХ и определить параметры аппроксимирующей функции: напряжение отсечки и крутизну характеристики при кусочно-линейной аппроксимации либо степень полинома и узлы интерполяции при степенной аппроксимации.

Решение:

Определив максимум Umax=U0+Um   и минимум Umin=U0-Um   изменения напряжения на ВАХ мы видим, что нелинейность рассматриваемого участка ВАХ минимальна – значит данный участок ВАХ можно принять за линейный. Для аппроксимации используем полином первой степени (представляет собой прямую , параллельную оси абсцисс, и наклонную прямую  с коэффициентом наклона , смещенную по оси абсцисс на величину ). Выбираем узлами интерполяции:

Полученная  ВАХ аппроксимации совпадает с реальной ВАХ, на том участке, где происходит изменение напряжения смещения. Графики формы тока для реальной ВАХ и для аппроксимированной совпадают, как и графики спектра амплитуд тока.

Задача № 3.

Дана проходная ВАХ нелинейного элемента и значение напряжения смещения U0=5В. Выбрать амплитуду гармонического воздействия так, чтобы в спектральном составе была одна гармоническая составляющая.

Решение:

Для определения амплитуд гармоник тока подставим в выражение для напряжения, приложенного к нелинейному элементу :  .

Сравнивая это выражение с рядом Фурье

,

видим, что ;  ;  . Таким образом, при аппроксимации ВАХ полиномом 1-ой степени ток содержит кроме постоянной составляющей I0 только основную (первую) гармонику, совпадающую по частоте (f=0,1Гц) с приложенным гармоническим напряжением.

Получаем: Um=0,1 В

i, мА

u, B


 

А также другие работы, которые могут Вас заинтересовать

39964. Отчет по учебной геологической практике 69 KB
  Целью проведения полевой практики по инженерной геологии является закрепление теоретического материала и ознакомление с природными условиями залегания различных типов горных пород а также с формами проявления геологических и инженерногеологических процессов. Ее учебными задачами являются: Приобретение навыка визуального определения геологических особенностей горных пород. В течении практики в полевых условиях изучаются: Вещественный состав и строение пород. Условия формы залегания пород.
39965. Учебная геологическая практика 865 KB
  4 Порядок проведения практики. Оценка практики. Цели и задачи практики Учебная геологическая практика проводится в летнее время после изучения студентами курса Инженерная геология.
39966. ГИДРОПНЕВМОПРИВОД МЕТАЛЛУРГИЧЕСКИХ МАШИН 3.27 MB
  Руководитель курсовой работы сообщает каждому студенту номер задания и номер варианта. Расчетно-пояснительная записка должна содержать оглавление с наименованием всех основных разделов записки; задание; введение, в котором излагаются достоинства и недостатки объемного гидропривода
39967. Гидропривод металлургических машин 8.17 MB
  Рисунок 1 Схемы иллюстрирующие принцип действия объёмного гидропривода. Из рисунка 1а следует что при приложении силы Р к закрытому сосуду через поршень эта сила уравновешивается силой давления жидкости силой трения пренебрегаем и силой тяжести тоже Положение сохраняется если в качестве сосуда возьмём два гидроцилиндра соединённых гидролинией рисунок 1б При перемещении поршня 1 произойдёт вытеснение жидкости под поршнем 2. Реверсирование гидромотора можно осуществить также изменением направления потока жидкости направляемого насосом...
39968. Проектирование привода технологического оборудования 1.54 MB
  Модуль числа зубьев колес и коэффициенты смещения . Модуль числа зубьев колес и коэффициенты смещения. Определим размеры характерных сечений заготовок по формулам тогда мм Кm = 20 коэффициент учитывающий вид передачи; Диаметр заготовки колеса равен Выбираем материал для колеса и шестерни сталь 45 термообработка улучшение твердость поверхности зуба шестерни 269302 HB Dm1 = 80 мм Dm1 Dm твердость поверхности зуба колеса 235262 НВ Sm1 = 80 мм Sm1 Sm. Для их определения используем зависимость Пределы контактной...
39969. Расчет эффективности проекта реконструкции установки АВТ-4 547.41 KB
  Приведены расчеты: анализ использования производственной мощности расчеты производственной программы и производственной мощности материального баланса установки до и после реконструкции расчет ФЗП и себестоимости продукции а также расчет основных техникоэкономических показателей и эффективность инвестиционного проекта кроме того приводится анализ рынка продукции нефтеперерабатывающих заводов. Введение 3 1 Анализ рынка продукции нефтеперерабатывающих заводов 5 2 Анализ использования производственной мощности 9 3 Расчет производственной...
39970. Расчет эффективности проекта реконструкции ОАО «Газпром нефтехим Салават» установка АВТ-4, цех №14 642.35 KB
  При общем объеме экспорта дизельного топлива из России в дальнее зарубежье в количестве 386 млн тонн дизельное топливо класса Евро5 составляет около 22 т. На российских НПЗ около половины всех печных агрегатов имеют КПД 50 60 при среднем показателе на зарубежных заводах 90. Рисунок 4 Индекс Нельсона на НПЗ в РФ Наличие на НПЗ процессов прямой перегонки нефти и установок улучшающих качество прямогонных фракций позволяют получить глубину не более 60 наличие процессов переработки вакуумного газойля увеличивает глубину...
39971. Разработка организации технического обслуживания и ремонта МТП в ЦРМ хозяйства с годовым объемом работ 56000 часов 205.66 KB
  В курсовом проекте рассчитана центральная ремонтная мастерская хозяйства обоснован технологический процесс технического обслуживания и ремонта машинного парка в ЦРМ хозяйства с годовым объемом работ 56000 часов разработан компоновочный план ЦРМ технологическая планировка участка ТО и диагностики разработан генеральный план РОБ хозяйства спроектирован технологический процесс восстановления оси произведена техникоэкономическая оценка ЦРМ. Распределение годового объема работ по объектам ремонта 1. Технологический процесс ТО и ремонта...
39972. Процесс деятельности предприятия, в области управления персоналом, отраженный на диаграммах нотации IDEF0 692.17 KB
  В рамках деятельности по управлению персоналом возникает закономерная потребность оценки состояния человеческого ресурса. Соответственно основной целью является не только проведение процедуры оценки но и процесс использования результатов. В рамках данной темы планируется рассмотреть в теоретической части: привязка процесса оценки к конкретной категории персонала или подразделению организации; установление взаимосвязи деловой оценки с другими направлениями деятельности службы управления персоналом: обучением управлением карьерой...