70986

Спектроскопия комбинационного рассеяния

Домашняя работа

Физика

Комбинационное рассеяние света (КРС)— неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В отличие от рэлеевского рассеяния, в случае комбинационного рассеяния света

Русский

2015-01-08

82.72 KB

2 чел.

Домашнее задание по дисциплине

«Оптические методы и приборы»

Тема: «Спектроскопия комбинационного рассеяния»

Комбинационное рассеяние света (КРС)— неупругое рассеяние оптического излучения на молекулах вещества (твёрдого, жидкого или газообразного), сопровождающееся заметным изменением частоты излучения. В отличие от рэлеевского рассеяния, в случае комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества.

Происхождение данного эффекта удобнее всего объяснить в рамках квантовой теории излучения. Согласно ей, излучение частоты ν рассматривается как поток фотонов с энергией hν, где h — постоянная Планка. При столкновениях с молекулами фотоны рассеиваются. В случае упругого рассеивания, они будут отклоняться от направления своего движения, не изменяя своей энергии (рэлеевское рассеяние). Но может быть и так, что при столкновении произойдет обмен энергией между фотоном и молекулой. Молекула при этом может как приобрести, так и потерять часть своей энергии в соответствии с правилами квантования — её энергия может измениться на величину ΔE, соответствующую разности энергий двух разрешенных её состояний. Иначе говоря, величина ΔE должна быть равна изменению колебательной и/или вращательной энергий молекулы. Если молекула приобретает энергию ΔE, то после рассеяния фотон будет иметь энергию hν − ΔЕ и соответственно частоту излучения ν − ΔE/h. А если молекула потеряет энергию ΔE, частота рассеяния излучения будет равна ν + ΔE/h. Излучение, рассеянное с частотой меньшей, чем у падающего света, называется стоксовым излучением, а излучение с большей частотой называется антистоксовым. При не очень высоких температурах населенность первого колебательного уровня невелика, при комнатной температуре при колебательной частоте 1000 см−1 на первом колебательном уровне находится всего 0,7 % молекул, поэтому интенсивность антистоксова рассеяния мала. Вероятность нахождения на уровне описывается распределением Больцмана. С повышением температуры населенность возбужденного колебательного уровня возрастает и интенсивность антистоксова рассеяния растет.

Вероятность w КРС (а следовательно, интенсивность линий КРС) зависит от интенсивностей возбуждающего I0 и рассеянного I излучения: w= aI0(b + I), где а и b — некоторые постоянные; при возбуждении КРС обычными источниками света (например, ртутной лампой) второй член мал и им можно пренебречь. Интенсивность линий КРС в большинстве случаев весьма мала, причём при обычных температурах интенсивность антистоксовых линий Iacт, как правило, значительно меньше интенсивности стоксовых линий I.

Поскольку вероятность рассеяния пропорциональна числу рассеивающих молекул, то отношение Iacт/I определяется отношением населённостей основного и возбуждённого уровней. 

По типу извлечённой информации анализ КР подразделяется на количественный, структурный, изотопный.

Схемы регистрации комбинационного рассеяния могут быть реализованы различным образом. Вот, к примеру, схема рамановского АО спектрометра с двойным монохроматором.

Рис. Принципиальная оптическая схема

рамановского АО спектрометра с двойным монохроматором.

А – исследуемый образец;

В – волоконно-оптический зонд;

С – объектив-переходник;

D – оптический блок;

E – двойной акустооптический монохроматор;

F – объектив лазера;

G – лазер.

1 – линзы;

2 – диафрагмы;

3 – обрезающий фильтр;

4 – поляризаторы;

5 – акустооптические ячейки;

6 – Фотоприемник (ФЭУ)

7 – удвоитель частоты;

8 – твердотельный лазер;

9 – диодная накачка.


 

А также другие работы, которые могут Вас заинтересовать

11610. Работа с таблицами в MS Word’2000/2003 116.5 KB
  Лабораторная работа № 5 Тема: Работа с таблицами в MS Word2000/2003. Цель работы: Освоить основные приемы создания редактирования и форматирования таблиц в документах текстового процессора MS Word2000/2003. Содержание работы: Создать таблицу Отчетная ведомость по компью
11611. Графические возможности MS Word’2000/2003 139 KB
  Лабораторная работа № 6 Тема: Графические возможности MS Word2000/2003.. Цель работы: Освоить основные приемы создания редактирования и форматирования графических объектов в документах текстового процессора MS Word2000/2003. Содержание работы: Задание: Создать бланк фирмы п...
11612. Оформление математических формул в документах MS Word’2000/2003 99 KB
  Лабораторная работа № 7 Тема: Оформление математических формул в документах MS Word2000/2003. Цель работы: Освоить основные приемы создания и форматирования математических формул в текстовых документах MS Word2000/2003. Содержание работы: Освоение...
11613. Работа с большим (структурированным) документом MS Word’2000/2003 138.5 KB
  Лабораторная работа № 8 Тема: Работа с большим структурированным документом MS Word2000/2003 Цель работы: Освоить основные приемы оформления структурированного документа в MS Word2000/2003. Содержание работы: Создание структурированного документа. Оформление структ
11614. Решение задач в MatLab 324.86 KB
  Лабораторная работа №2. Решение задач в MatLab Цель лабораторной работы закрепление практических навыков решения задач в среде математического пакета MatLab необходимых для выполнения лабораторных работ по дисциплине ТИПиС. Этап I. Решение уравнений в пакете MatLa...
11615. Создание собственных функций на MatLa 147.39 KB
  Создание собственных функций Необходимо создать программу на MatLab. При этом все операции с матрицами должны производиться без использования стандартных функций. Создание функции сложения матриц: function C=addmAB d1=sizeA; d2=sizeB; if d11==d21||d12==d22 n=d11; m=d12; ...
11616. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ 2.14 MB
  Лабораторная работа №7 ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ С СОСРЕДОТОЧЕННЫМИ ПАРАМЕТРАМИ Целью работы является исследование переходных процессов в линейных электрических цепях содержащих сопротивления индуктивность и емкость при действии и...
11617. Изучение рентгеновских трубок и аппаратов 629.5 KB
  ЛАБОРАТОРНАЯ РАБОТА №1. Изучение рентгеновских трубок и аппаратов. РЕНТГЕНОВЧСКИЕ ТРУБКИ. Рентгеновская трубка является источником рентгеновских лучей возникающих в ней в результате взаимодействия быстро летящих электронов с атомами анода установленного...
11618. Мерология. Лабораторный практикум 1.36 MB
  Мерология. Лабораторный практикум Учебнометодическое пособие для студентов приборостроительного факультета Лабораторный практикум предназначен для использования в высших учебных заведениях при подготовке инженеров по специальности Метрология стандартизация и...