71044

Дослідження характеристик біполярного транзистора

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Експериментальним шляхом зняти статичні вольтамперні характеристики біполярного транзистора увімкненого з загальним емітером; визначити за цими характеристиками його h параметри та освоїти методику вимірювання параметрів транзисторів за допомогою тестера.

Украинкский

2014-11-01

608.5 KB

11 чел.

Робота 20. Дослідження характеристик біполяр-           

                      ного транзистора

   

20.1. Мета роботи

Експериментальним шляхом зняти статичні вольт-амперні характеристики біполярного транзистора, увімкненого з загальним емітером; визначити за цими характеристиками його h - параметри та освоїти методику вимірювання параметрів транзисторів за допомогою тестера.

20.2. Короткі теоретичні відомості

Біполярним транзистором називають напівпровідниковий прилад з двома взаємодіючими p-n-переходами і трьома виводами, призначений для підсилення, генерування і комутації  електричних сигналів.

Основою транзистора є кристалічна пластинка германію чи кремнію, в якій за допомогою відповідних домішок утворюють три області з різним типом домішкової провідності. Транзистори, в котрих крайні області мають діркову провідність, а середня електронну - називають транзисторами p-n-p типу (рис. 20.1,б). В транзисторах            n-p-n типу (рис.20.1,а) крайні області мають електронну провідність, а середня - діркову. Крайні області називають емітером (Е) і колектором (К), а середню -базою (Б).

Рис. 20.1.

Принцип роботи транзисторів обох типів однаковий, але полярність прикладених напруг протилежна. У назві біполярні відбито той факт, що струм через транзистор визивається рухом носіїв заряду обох знаків - дірок і електронів, на відміну від польових транзисторів, де струм у каналі виникає в результаті руху носіїв лише одного знаку.

Транзистори вмикають в електричні кола таким чином, щоб до переходу емітер-база зовнішня напруга була прикладена у прямому напрямку, а до переходу колектор-база - у зворотному. Коротко розглянемо роботу біполярних транзисторів на прикладі транзистора n-p-n типу, схема вмикання якого наведена на рис. 20.2.

                   

Рис.20.2.

Так як емітерний перехід зміщений у прямому напрямку, то навіть  невелика напруга між емітером і базою визиває перехід основних носіїв, в даному випадку електронів, із емітера в базу. Цей процес називають інжекцією основних носіїв із емітера в базу. В області бази  інжектовані носії  стають неосновними і в наслідок теплового руху (дифузії)  і під дією прискорюючого поля колекторного переходу (дрейфу) досягають колектора, створюючи основний струм колектора . Деяка частина  електронів, інжектованих в базу, рекомбінує з дірками бази, спричинюючи появу струму бази . Однак, цей струм невеликий тому, що концентрація дірок в базі низька, а область бази порівняно невелика.

Розглянуте вмикання транзистора називають вмиканням з спільною базою, оскільки вивід бази є спільним для вхідного і вихідного кіл. Отже, при такому вмиканні величиною вихідного колекторного струму транзистора можна керувати, змінюючи величину вхідного емітерного струму. Відношення приростів колекторного струму до емітерного носить назву коефіцієнта передачі за струмом в схемі з спільною базою

.                                      /20.1/

Величина  лежить в межах 0.9 -0.99, тобто при цьому вмиканні   транзистора не відбувається підсилення струму, однак відбувається підсилення за напругою і потужністю. При емітерному струмі, рівному нулю, через транзистор протікає незначний початковий струм колектора , зумовлений рухом неосновних носіїв: дірок із колектора в базу та електронів із бази в колектор для транзисторів      n-p-n - типу. 

Схема вмикання транзистора зі спільною базою характеризується низьким вхідним та великим вихідним опорами і застосовується дуже рідко, зокрема, у підсилювачах напруги, що працюють на високоомне навантаження.

На рис. 20.3,а наведено схему вмикання транзистора з спільним колектором. Вона відрізняється великим вхідним та малим вихідним опорами, тому застосовується у вхідних (буферних) каскадах підсилювачів та у вихідних каскадах підсилювачів потужності для узгодження з низькоомним навантаженням. Коефіцієнт підсилення за напругою в цій  схемі близький до одиниці.

                       а)                                                                   б)

Рис.20.3.

Найчастіше використовується вмикання транзисторів із спільним емітером (рис 20.3,б). При цьому вмиканні здійснюється підсилення і за напругою, і за струмом. Відношення приростів колекторного струму  до базового називають коефіцієнтом передачі транзистора за струмом у схемі з загальним емітером

.                                         /20.2/

Основними характеристиками транзистора, увімкнутого за схемою з загальним емітером, є статична вхідна характеристика  при  і статична вихідна характеристика  при .

Підсилюючі властивості транзисторів оцінюються за їх характеристиками за допомогою системи h - параметрів. Значення          h-параметрів знаходять з побудови характеристичних трикутників на статичних вольт-амперних характеристиках транзистора в околі робочої точки.

При дії малих сигналів транзистор розглядають як лінійний активний чотириполюсник (рис. 20.4).

Рис. 20.4.

За допомогою системи h-параметрів легко отримати вирази для приростів вхідної напруги і вихідного струму, як функцій зміни струму бази і колекторної напруги:

;

.                                 /20.3/

З приведених рівнянь легко встановити фізичний зміст                        h-параметрів. Зокрема, параметр , що визначається відношенням приросту напруги на базі до відповідного приросту струму бази при постійній напрузі на колекторі є вхідним опором транзистора:

   при  .                        /20.4/

Параметр  називають коефіцієнтом зворотного зв'язку за напругою і він визначається відношенням приросту колекторної напруги до визваного приросту напруги бази при постійному струмі бази:

   при .                       /20.5/

Важливим параметром транзистора є його коефіцієнт передачі за струмом , рівний відношенню приросту колекторного струму до відповідного приросту струму бази при постійній напрузі на колекторі:

  при .                      /20.6/

Параметр  має зміст вихідної провідності транзистора у схемі з загальним емітером і визначається відношенням приросту колекторного струму до відповідного приросту напруги на колекторі при постійному струмі бази, а саме

                     

 при .                      /20.7/

Параметри  i  знаходять за вхідними статичними характеристиками транзистора, а  і - за вихідними.

Система h-параметрів використовується при побудові схем заміщення транзисторів, необхідних при теоретичному аналізі роботи електронних кіл. Схема заміщення біполярного транзистора наведена на рис. 20.5.

    

Рис. 20.5.

Зі схеми рис. 20.5. видно, що транзистор можна розглядати, як кероване джерело струму. Величина струму генератора визначається струмом бази, який, в свою чергу, залежить від величини прикладеної напруги і вхідного опору транзистора . Джерело струму зашунтоване резистором, опір якого є оберненим до вихідної провідності транзистора.

20.3. Програма роботи

   

1. Зібрати схему дослідження характеристик транзистора зі спільним емітером.

2. Зняти сім'ю вхідних статичних характеристик  при різних напругах на колекторі транзистора.

3. Зняти сім'ю вихідних статичних характеристик при фіксованих значеннях струму бази.

4. Визначити h-параметри транзистора і порівняти з довідковими даними.

5. Побудувати схему заміщення транзистора.

6. Визначити коефіцієнт передачі за струмом транзистора за допомогою тестера.

   

20.4. Cхема дослідження роботи транзистора

  

       

Рис. 20.6.

На схемі, наведеної на рис. 20.6, позначені: R1-резистор 1 кОм; R2-резистор змінний 470 Ом; VT1-транзистор КТ315А; SA1-тумблер; PA1- тестер Ц43101; PA2-тестер 43342; PV1- мультиметр Ф4372; РV2 -вольтметр блока живлення пристрою.

20.5. Порядок виконання роботи 

 

1. Зберіть схему дослідження транзистора  згідно з рис. 20.6.  Приєднайте її до джерел  живлення +5 В та +15 В. Ручку регулювання напруги +15 В виведіть у ліве крайнє положення і увімкніть живлення.

2. Для зняття сім'ї вхідних статичних характеристик  при =0; 5; 10 В необхідно змінювати напругу на базі транзистора за допомогою резистора R2 так,  щоб струм бази змінювався від 0 до 0.2 mA ступенями у 0,025 mA , підтримуючи напругу на колекторі транзистора постійною. Покази приладів занесіть в табл. 1

За даними табл. 1. побудуйте сім'ю вхідних статичних характеристик транзистора.

ЗАУВАЖЕННЯ : дозволяється вмикати джерело колекторної напруги тумблером SA1, лише переконавшись, що вона не перевищує 10 В і, що струм бази не більший 0.2 mA.

                                                                                                    Таблиця 1

N

 =0 В                     

  =5 В       

 =10 В

п.п

, mA

, В

, mA

, В

, mA

, В

1

2

3

4

5

6

7

8

9

3. Для зняття сім'ї вихідних статичних характеристик транзистора  при =0.1; 0.15 ; 0.2 mA  за допомогою регулятора            +15 В блока живлення змінюйте напругу на колекторі транзистора від 0 до 10 В, підтримуючи постійним струм бази. Покази приладів занесіть в табл. 2.

                                                                                                   Таблиця 2

N

 0.1 mA                     

       0.15 mA       

 0.2 mA

п.п

, mA

, В

, mA

, В

, mA

, В

1

2

3

4

5

6

7

8

9

10

За даними табл. 2 побудуйте сім'ю вихідних статичних характеристик транзистора.

4. За побудованими статичними характеристиками графоаналітич-

ним методом визначіть h-параметри транзистора КТ315А та порівняйте з виписаними із довідника.

5. Використовуючи результати розрахунку h-параметрів, побудуйте схему заміщення транзистора згідно з рис. 20.5.

6. Для оперативного визначення коефіцієнта натисніть кнопку вибору типу транзистора на панелі тестера Ц4342. Вставте транзистор КТ315 в спеціальну панель на корпусі тестера таким чином, щоб виводи бази, колектора і емітера транзистора співпали з назвами гнізд на панелі. Галетний перемикач приладу встановіть проти позначки. Обертаючи ручку 0,  приладу, встановіть стрілку в кінець шкали,  позначеної . Переведіть вимикач в положення та проведіть вимірювання:=            .

20.6. Контрольні запитання

  

1. Чому транзистори називають біполярними?

2 Який принцип роботи біполярного транзистора?

3. Які основні параметри транзисторів?

4. Які особливості роботи транзистора при трьох основних схемах його вмикання?

5. Що таке коефіцієнт передачі транзистора за струмом і як його можна визначити?

6. Поясніть роботу транзистора за схемою його заміщення.

7. Як класифікуються біполярні транзистори?

8. Який фізичний зміст h- параметрів транзистора?

9. Чим відрізняються біполярні транзистори від польових?

10. В якій схемі вмикання транзистора коефіцієнт підсилення за напругою близькій до одиниці?

 

237


 

А также другие работы, которые могут Вас заинтересовать

20604. Перспективы развития СПРС и ПСС – переход к системам 3-го поколения 236.5 KB
  Перспективы развития СПРС и ПСС – переход к системам 3го поколения Прошло немногим более двух десятилетий с момента появления первых мобильных телефонов но мобильная связь уже подверглась существенным изменениям. Cистемы первого поколения основанные на аналоговом принципе использовались исключительно для телефонной связи и лишь впоследствии обзавелись некоторыми базовыми сервисами. Cистемы второго поколения включая стандарт GSM предоставляют улучшенное качество передачи и защиту сигнала дополнительные сервисы низкоскоростную...
20605. Принципы функционирования систем сотовой связи 490 KB
  Свое название они получили в соответствии с сотовым принципом организации связи согласно которому зона обслуживания территория города или региона делится на ячейки соты. Эти системы подвижной связи появившиеся сравнительно недавно являются принципиально новым видом систем связи так как они построены в соответствии с сотовым: принципом распределения частот по территории обслуживания территориальночастотное планирование и предназначены для обеспечения радиосвязью большого числа подвижных абонентов с выходом в телефонную сеть общего...
20606. Абонентские терминалы СПРС и ПСС 360.5 KB
  В верхней части аппарата обычно располагаются световой индикатор светодиод отображающий режим работы режим ожидания вызов включено и источник звукового сигнала звонок. При получении вызова о чем абонент оповещается звуковым сигналом звонком он манипулирует теми же клавишами. Во всех аппаратах на дисплее отображаются уровень принимаемого сигнала и степень разряда аккумуляторной батареи в большинстве из них имеется подсветка дисплея и клавиатуры. К стационарному аппарату обычно бывает возможно подключить телефонный аппарат...
20607. Методы формирования речевых сигналов в слуховой системе 103 KB
  В некоторых восточных языках например в китайском изменение частоты основного тона важный информативный параметр речи. Звуки речи в которых присутствует основной тон называются вокализованными. Темп – характеризует скорость речи количество слов произнесённых в определённый временной промежуток. Темп речи в норме по своим временным и пространственным характеристикам соответствует органическим темповым и ритмическим параметрам присущим речевому и зрительному потоку информации человека.
20608. Слуховое восприятие речевых сигналов и оценка качества их звучания 335.5 KB
  Как правило слуховое восприятие речи у пожилых людей нарушается в большей степени чем чистых тонов. Среди существующих методов не утратили своего значения камертональные опыты или пробы и установление восприятия разговорной и шепотной речи. Наиболее распространенными способами оценки слуха в диагностики тугоухости являются измерение порогов слышимости чистых тонов и разборчивость записанной на ленте магнитофона и воспроизводимой через аудиометр речи определенной интенсивности см. являются гиперакузия заключающаяся в повышенной...
20609. Простой генератор кода 37 KB
  Данные вычисленные результаты находятся в регистрах как можно дальше и перенос их в память осуществляется только при необходимости использовать этот регистр. a:= bc b в регистр Ri c в регистр Rj. 2 b в регистр Ri c в памяти ADD Ri с.
20610. Распределение и назначение регистров. Счетчики использования регистров 52.5 KB
  Пример: Переменная Регистр b R0 d R1 a R2 e R3 B0: MOV R0b MOV R1d MOV R2a MOV R3e B1: MOV R2 R0 ADD R2c SUB R1 R0 MOV R3 R2 ADD R3f B2: SUB R2 R1 MOV f R2 B3: MOV R0 R1 ADD R0f MOV R3 R2 SUB R3c B4: MOV R0 R1 ADD R0c.
20611. Оптимизация базовых блоков c помощью дагов 88 KB
  1 t1:=4i t2:=a[t1] t3:=4i t4:=b[t3] t5:=t2t4 t6:=prodt5 prod:=t6 t7:=i1 i:=t7 i =20 goto1 Поочередно рассматривается каждая инструкция блока. e:=ab f:=ec g:=fd n:=ab i:=ic j:=ig = e:=ab f:=ec g:=fd i:=ic j:=ig Локальная оптимизация устранение лишних инструкций MOV R0a MOV a R0 устранение недостижимого кода if а = 1 goto L1 goto L2 L1: L2: = if а = 1 goto L2 goto L1 L1: goto L2 = goto L2 3.
20612. Использование динамического программирования при генерации кода 137.5 KB
  Пример: Пусть дана инструкция вида: add R1 R0 она может быть представлена в виде: R1:= R1 R0 Алгоритм динамического программирования разделяет задачу генерации оптимального кода для некоторого выражения на подзадачи генерации оптимального кода для подвыражений из которых состоит выражение Ei. Если E:=E1 E2 то генерация кода E разбивается на генерацию кода E1 и генерацию кода E2. Композиция получаемых элементов кода осуществляется в зависимости от типа вхождения подвыражений в основное выражение.