71056

Исследование LC-автогенератора

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Исследовать работу генератора в режиме синхронизации колебаний захват частоты. Путём изменения частоты генератора для различных значений фиксированного напряжения внешнего генератора экспериментально определяется область синхронизации автогенератора.

Русский

2014-11-01

272.5 KB

3 чел.

Лабораторная работа "Исследование LC-автогенератора"

 I.Описание макета.

Схема автогенератора, расположение органов регулировки и подключение клемм к узлам схемы изображены на самом макете автогенератора.

1.Органы управления

  1.  Регулировка обратной связи, снабжённая нониусом.
  2.  Регулировка напряжения смещения (Rсмещ) .
  3.  Тумблер выключения обратной связи.

2.Клеммы

1 - вход усилителя при разомкнутой цепи обратной связи;

2 - напряжение на контуре автогенератора (выходное напряжение);

3 - напряжение на катушке обратной связи;

4 - вход для подачи напряжения синхронизации.

3.Измерительные приборы

  1.  осциллограф  2) частотомер  3) генератор

II.Порядок выполнения работы.

  1.  Определение частоты генерации.

Подключение приборов:

а) к клеммам "2"(левые) - осциллограф;

в) к клеммам "2"(правые) - частотомер.

      Проведение исследований:

а) Включить макет, включить обратную связь.

б) Установить максимальную связь между катушками (n=0).

в) Rсмещ установить в таком положении, чтобы была максимальная амплитуда.

г) Измерить частоту генерации.

Все дальнейшие измерения производить на частоте генерации fген.  

2. Снять колебательные характеристики автогенератора и рассчитать зависимости средней крутизны от амплитуды входного напряжения для различных значений смещения.

Три значения смещения задаются преподавателем. Частота внешнего генератора fген.

Отключить обратную связь. Изменяя амплитуду напряжение генератора от 0 до 1В, снять три зависимости амплитуды напряжения на выходе от амплитуды напряжения на входе (колебательные характеристики транзистора). По результатам измерений вычислить нормированную среднюю крутизну и I1(U)=Uвых/Rрез (Rрез=1 кОм), результаты занести в таблицу и построить графики.  Рассчитывается нормированная средняя крутизна (безразмерная)  по формуле

,

где Rрез - резонансное сопротивление контура.

Uсм1

Uсм2

Uсм3

Uвх

Uвых

Sср.н

I1

Uвых

Sср.н

I1

Uвых

Sср.н

I1

0,1

3. Исследовать зависимость величины коэффициента обратной связи от положения нониуса (расстояния между катушками).

а) Установить напряжение генератора таким, чтобы напряжение на клеммах "2" было максимальным (Uвых=мах).

б) Переключить осциллограф к клеммам "3" (левые) (напряжение обратной связи) и  изменяя расстояние между катушками, снять зависимость В от расстояния (показания нониуса).

показания нониуса (n)

0

5

10

15

20

25

30

35

Uобр.св. "3"

По результатам строится график B=F(n).

4. Исследовать мягкий и жёсткий режим самовозбуждения автогенератора.

По результатам предыдущих пунктов подобрать два смещения для мягкого и жёсткого режимов самовозбуждения.

Подключение приборов:

а) к клеммам "2" подключить осциллограф.

Отключить генератор от макета. Включить тумблером обратную связь. Установить выбранную величину смещения и, изменяя показания нониуса, снять зависимость амплитуды Uвых от показаний нониуса. Зафиксировать точки бифуркаций (срыва и возбуждения колебаний). Измерения производить сначала при увеличении n, а затем при уменьшении. Показания нониуса перевести в значения В. Данные занести в таблицу.

показания нониуса  

n 

Uсм=

мягкий режим

Показания нониуса  

n

Uсм=

жёсткий режим

В

Uвых

В

Uвых

0

0

35

35

По результатам измерений строятся графики Uвых=F(B) для мягкого и жёсткого режимов генерации.

5. Исследовать работу генератора в режиме синхронизации колебаний (захват частоты).

Путём изменения частоты генератора для различных значений фиксированного напряжения внешнего генератора экспериментально определяется область синхронизации автогенератора.

Подключение приборов: к клеммам "4" подключается генератор

Устанавливается на макете Uсм=0,5В и показания нониуса n=10. Данные измерений заносятся в таблицу.

напряжение

генератора Uген, мВ

нижняя граница

синхронизации

верхняя граница

синхронизации

1

2

3

9

10

По результатам измерений строится график.

ИССЛЕДОВАНИЕ

LC-АВТОГЕНЕРАТОРА

Лабораторная работа

"Затягивание частоты автогенератора"

Описание лабораторной установки.

Лабораторная установка содержит:

1) Лабораторный макет с источником питания 2) Осциллограф  3) Милливольтметр 4) Частотомер

Принципиальная схема макета изображена на самом макете. С колебательным контуром автогенератора L1C1 индуктивно связан второй (нагружающий) контур L2C2. Связь между контурами можно менять, изменяя расстояние между контурами (перемещая по салазкам катушку индуктивности L2). Расстояние измеряется с помощью встроенной линейки. Собственные частоты колебательных контуров можно менять, изменяя ёмкости контуров С1 и С2. Градуировка шкал емкостей дана через 10 градусов (от 0 до 180). Осциллограф подключается к контуру автогенератора, а милливольтметр - к нагруженному контуру.

Порядок выполнения работы.

1.Градуировка частоты автогенератора макета.

Снять зависимость частоты автогенератора f1 от угла Ф поворота пластин конденсатора переменной ёмкости С1. Для этого включить лабораторный макет и установить по вольтметру напряжение питания транзистора Uпит=10 В. Включить приборы и дать им прогреться 2-3 мин. Затем подключить к гнёздам Г3-Г3' частотомер, к гнёздам Г1-Г1' - осциллограф, а к гнёздам Г2-Г2' - милливольтметр. Для уничтожения влияния второго контура на первый необходимо второй контур разомкнуть (вытащить перемычку).

Результаты измерений (через 10 градусов) занести в таблицу и построить график градуировки частоты автогенератора.

F (градусы)

0

10

20

30

180

F1  (кГц)

2. Градуировка частоты второго контура.

Снять зависимость частоты второго контура f2 от угла F поворота конденсатора переменной ёмкости С2. Для этого восстановить второй контур. Установить слабую связь между первым и вторым контуром (расстояние между катушками контуров l=50-70мм). Установить угол F конденсатора С2, измерить резонансную частоту второго контура, перестраивая ёмкость С1 генератора так, чтобы во втором контуре возник резонанс. Резонанс во втором контуре фиксируется по максимальному отклонению стрелки милливольтметра. Данные занести в таблицу и построить график градуировки частоты второго контура. F изменять через 10 градусов от 20 до 180.

3. Измерение добротности второго контура. 

При слабой связи (l=50-70мм) установить частоту генератора 300 кГц и настроить второй контур в резонанс по милливольтметру. Отсчитать значение напряжения на втором контуре U2 при резонансе. Изменяя частоту генератора влево и вправо от резонансной частоты (изменением С1), отсчитать значения частот, на которых амплитуда напряжения на втором контуре падает до 0,707 от резонансного значения U2. Определить ширину пропускания контура 2Df:   , где f1 и f2 - частоты, на которых напряжение на контуре равно 0,707 от резонансного значения. Вычислить добротность контура:

.

Зная добротность и используя соотношения: для слабой связи   Q*Kсв=0.7, для сильной связи Q*Kсв=4, найти Kсв для слабой и сильной связи, а затем по приведённому графику зависимости коэффициента связи между контурами от расстояния между катушками индуктивности контуров Ксв=f(l) определить положение катушки индуктивности второго контура относительно первого для этих случаев.

4. Исследование влияния контуров на работу генератора.

А,  Связь между контурами меньше критической.

Установить расстояние между катушками (см. пункт 3) соответствующее выбранной связи.

 4.1. Исследовать зависимость частоты генерации fген, напряжений на контурах U1, U2 от частоты первого контура (С1) при постоянной частоте второго (С2onst). Величина С2 задаётся преподавателем.

а) Устанавливается заданное значение ёмкости С2 (по углу Ф).

б) Изменяя ёмкость С1, снимается зависимость fген, напряжений U1, U2. Результаты измерений заносим в таблицу.

Ф (С1)

0

180

fген

U1

U2

По данным этой таблицы и предыдущих заданий построить зависимости fген, U1, U2 от частоты первого контура

4.2. Исследовать зависимость частоты генерации fген, напряжений на контурах U1, U2 от частоты второго контура (при изменении ёмкости С2) при постоянной частоте первого (С1=Const). Не меняя выбранной в предыдущем пункте величины связи между контурами, устанавливаем частоту первого контура в соответствии с заданным преподавателем.

Изменяя частоту настройки второго контура, снимаем зависимость fген, U1, U2 от ёмкости второго контура С2. Данные заносим в таблицу.

По данным этой таблицы и предыдущих заданий построить зависимости , fген, U1, U2 от частоты второго контура.

Б.  Связь между контурами больше критической.

Установить расстояние между катушками (см. пункт 3) соответствующее выбранной связи.

4.3. Исследовать зависимость частоты генерации fген, напряжений на контурах U1, U2 от частоты первого контура при постоянной частоте второго.

а) Устанавливается заданное значение ёмкости С2 (по углу Ф).

б) Изменяя ёмкость С1, снимается зависимость fген, напряжений U1, U2. Результаты измерений заносим в таблицу.

ПРИМЕЧАНИЕ. Изменения измеряемых величин сопровождается скачками напряжений и частоты. Поэтому целесообразно снимать зависимости отдельно при увеличении ёмкости и отдельно при уменьшении ёмкости. Особо следует измерить значения в точках скачков. Подходить к точке скачка следует медленно, ориентируясь по показаниям частотомера и осциллографическому изображению сигнала. При этом в таблице необходимо зафиксировать измеряемые значения непосредственно до и после скачка.

По данным этой таблицы построить зависимости fген, U1, U2 от частоты первого контура.

4.4. Исследовать зависимость частоты генерации fген, напряжений на контурах U1, U2 от частоты второго контура (при изменении ёмкости С2) при постоянной частоте первого. Не меняя выбранной в предыдущем пункте величины связи между контурами, устанавливаем частоту первого контура в соответствии с заданным преподавателем.

Изменяя ёмкость С2, снимаем зависимость fген, U1, U2 от частоты второго контура.. Данные заносим в таблицу, аналогичную предыдущей таблице. По данным этой таблицы построить зависимости fген, U1, U2 от частоты второго контура.

Лабораторная работа "Исследование нелинейного резонанса

и параметрического возбуждения колебаний

в контуре с нелинейной  ёмкостью"

Приборы: генератор, макет, осциллограф.

Генератор подключается ко входу макета, а осциллограф – к выходу.

1.Исследование зависимости дифференциальной ёмкости от напряжения смещения на диоде.

На вход макета подать с генератора высокочастотное напряжение амплитуды 0,05В.

На макете тумблер установить вниз, с помощью ручки задать напряжение смещение на диоде, значение которого отобразится на цифровом дисплее. Изменяя частоту подаваемого с генератора напряжения, найти резонансную частоту для данного напряжения смещения. Затем изменить напряжение смещения на диоде и повторить измерения.

Данные заносятся в таблицу. По результатам измерения резонансной частоты рассчитывается дифференциальная ёмкость по формуле:

U (вольт)

f (МГц)

С (пФ)

Рекомендуемые значения постоянного напряжения смещения на диоде U: в диапазоне 0 - 0,5В изменять через 0,1В; в диапазоне 0,5 - 3В изменять через 0,5В и в диапазоне 3 - 10В изменять через 1В.   

По результатам измерений и расчётов нарисовать график зависимости С от U.

2. Исследование формы резонансной кривой нелинейного колебательного контура с нелинейной ёмкостью для двух различных входных напряжений.

Снимаются резонансные кривые для заданного преподавателем варианта напряжения смещения на диоде U и двух значений входного высокочастотного напряжения, равных 0,1В и 0,3В.

На макете установить заданное напряжение смещения, а затем тумблер переключить вверх.

Для высокочастотного напряжения 0,1 В измерения проводить только с увеличением частоты, а для напряжения 0,3 В измерения проводятся сначала с увеличением частоты, а затем в обратную сторону. Частоты, где происходят скачки напряжения, определяются и также заносятся в таблицу. Диапазон частот и шаг изменения определяются из условия получения наилучшего графика.

По результатам измерений строятся графики резонансных кривых для двух значений входного напряжения.

3.Наблюдение параметрического резонанса в нелинейном колебательном контуре при постоянном смещении .

На нелинейный колебательный контур подаётся максимально возможное переменное напряжение (0,5 В) с частотой, близкой к удвоенной резонансной частоте и отыскивается область параметрического возбуждения колебаний (напряжение смещения 0,2-0,5В). Исследуется зависимость ширины области параметрического возбуждения от амплитуды напряжения генератора. Данные заносятся в таблицу.

Uген 

частота возникновения колебаний

частота срыва колебаний

ПРИМЕЧАНИЕ. Составляются две таблицы. В одной отмечаются частоты возникновения и срыва колебаний при прямой перестройке частоты генератора, в другой - при обратной перестройке частоты.

По результатам измерений строятся графики областей параметрического резонанса (по оси х – частоты возникновения и срыва колебаний, по оси y – амплитуда внешнего воздействия).

НЕЛИНЕЙНЫЙ И ПАРАМЕТРИЧЕСКИЙ

РЕЗОНАНС


 

А также другие работы, которые могут Вас заинтересовать

10387. Періодична система хімічних елементів Д. І. Менделєєва 243.5 KB
  Тема: Періодична система хімічних елементів д. і. менделєєва Навчальна мета: розгляути характер руху електрона; ввести поняття орбіталь енергетичний рівень і енергетичний підрівень; розглянути та проаналізувати правила заповнення електронних шарів атомів хімі
10388. Оксиген як хімічний елемент. Кисень проста речовина 43.5 KB
  Оксиген. Кисень Тема. Оксиген як хімічний елемент. Кисень проста речовина. Оксиген у природі. Фізіологічна дія кисню. Добування кисню в лабораторії. Каталізатори. Фізичні властивості кисню. Мета. Навчити учнів за планом давати характерис
10389. Хімія та екологія 82.5 KB
  Дата: Тема: €œХімія та екологія.€ Мета: навчальна: ознайомити учнів з екологічними проблемами дати поняття основним чинникам та джерелам забруднення їх впливу на довкілля; виховна: виховувати вміння вести бесіду самостійно конструювати свої знання орієн
10390. Ізомерія етиленових вуглеводнів, номенклатура. Розв’язування тренувальних вправ на написання ізомерів 36.5 KB
  Тема: Ізомерія етиленових вуглеводнів номенклатура. Розв’язування тренувальних вправ на написання ізомерів. Навчальна мета: ознайомити з новим видом ізомерії за положенням кратних зв’язків, продовжувати розвивати уміння складати структурні формули за назвами речо
10391. Нітратна кислота та її солі - нітрати 84.5 KB
  Мета: поглибити знання учнів про нітратну кислоту розглянути властивості нітратної кислоти зумовлені наявністю в її складі атома Нітрогену у найвищому ступені окиснення а саме її взаємодію з металами підкреслити небезпечність концентро...
10392. Бензен як представник ряду ароматичних вуглеводнів. Його склад, електронна і структурні формули, фізичні властивості. Хімічні властивості бензену 169 KB
  Дата: Тема: Бензен як представник ряду ароматичних вуглеводнів. Його склад електронна і структурні формули фізичні властивості. Хімічні властивості бензену€. Тип уроку: урок вивчення нового матеріалу. Навчальна мета: Ознайомити учнів з бензеном як предста...
10393. Будова електронних оболонок атомів елементів перших трьох періодів 97 KB
  Планконспект уроку з хімії На тему: Будова електронних оболонок атомів елементів перших трьох періодів Мета: Розкрити причину періодичної зміни властивостей елементів і їх сполук у світлі закономірної зміни будови електронних оболонок атомів. Розвивати пізнавальну...
10394. Відносна молекулярна маса речовини, обчислення її за хімічною формулою. Масова частка елемента у речовині. Обчислення масової частки елемента у складі речовини 6.95 MB
  Тема: Відносна молекулярна маса речовини обчислення її за хімічною формулою. Масова частка елемента у речовині. Обчислення масової частки елемента у складі речовини. Навчальна мета: 1 закріпити знання про хімічні формули й уміння обчислювати відносну молекулярну масу...
10395. Генетичний звязок між класами органічних сполук 41 KB
  Тема: Генетичний звязок між класами органічних сполук. Навчальна мета: узагальнити знання учнів про класи органічних сполук обґрунтувати твердження про єдність і взаємозв’язок усієї живої і неживої природи. Виховна мета: виховувати в учнів самостійність вміння вико...