71068

Численное интегрирование и дифференцирование

Лабораторная работа

Информатика, кибернетика и программирование

Дело в том что для большого числа элементарных функций первообразные уже не выражаются через элементарные функции в результате чего нельзя вычислить определенный интеграл с помощью формулы Ньютона-Лейбница. Особенно важны формулы приближенного интегрирования при решении задач содержащих функции заданные таблично.

Русский

2014-11-01

150 KB

4 чел.

Лабораторная работа 2
Численное интегрирование и дифференцирование

 

Численное интегрирование Численное дифференцирование ~ Символьное интегрирование и дифференцирование ~Порядок выполнения лабораторной работы 5

 

Численное интегрирование

Формулы для приближенного вычисления определенных интегралов применяются очень часто. Дело в том, что для большого числа элементарных функций первообразные уже не выражаются через элементарные функции, в результате чего нельзя вычислить определенный интеграл с помощью формулы Ньютона-Лейбница.

Встречаются также и случаи, когда приходится прибегать к формулам приближенного интегрирования даже для таких интегралов, которые могут быть найдены в конечном виде, но такое выражение оказывается слишком сложным. Особенно важны формулы приближенного интегрирования при решении задач, содержащих функции, заданные таблично.

Квадратурные формулы

Наиболее распространенным подходом к численному вычислению интеграла

(1)

является разбиение отрезка [a, b] на n равных частей а = х0 х1< . . . < хn = b c шагом h = , интерполирование функции f(x) на отрезке [a, b] (получение интерполяционного многочлена j (x)) и замена в (1) интеграла интегральной суммой:

In » I.

(2)

Соотношения вида (2) называют квадратурными формулами.

В простейших случаях в качестве интерполяционного многочлена j (x) берут ступенчатую, кусочно-линейную или кусочно-параболическую функции, а также полином степени k = n (j (x) = xk) для которых квадратурные формулы принимают вид (см. Пример 1 Рисунка 8):

Рисунок 8. Численное интегрирование и дифференцирование

 

формула прямоугольников:

  i = 1, 2, . . ., n;

(3)

формула трапеций:

;

(4)

формула Симпсона (n - четное число):

;

(5)

метод неопределенных коэффициентов состоит в вычислении определенного интеграла (1) с помощью формулы (2) коэффициенты Аi, которой находятся в результате решения следующей системы уравнений:

где , k = 0, 1, . . ., n.

(6)

Метод Монте-Карло

 

Во многих задачах исходные данные носят случайный характер, поэтому для их решения должен применяться статистико-вероятностный подход. На основе такого подхода и построен метод статистических испытаний, называемый также методом Монте-Карло.

Пусть h - равномерно распределенная на отрезке [a, b] случайная величина, :

.

(7)

Для генерирования последовательности случайных чисел с нормальным законом распределения в Mathcad возможно использовать функцию rnd

rnd(x)

Возвращает равномерно распределенное случайное число между 0 и х.

Для реализации метода Монте-Карло удобно использовать функцию mean

mean(A)

Возвращает среднее арифметическое значение элементов массива А.

Численное дифференцирование

Численное дифференцирование аналитически или таблично заданной функции f(x) на отрезке [a, b] в точке х = Хзаключается в замене f(x) интерполяционным полиномом j (x), i?iecaiaiua  которого можно найти аналитически с помощью соответствующих формул:

.

(8)

Метод неопределенных коэффициентов (см. Пример 2 Рисунка 8) предполагает использование в качестве интерполяционного многочлена j (x) полином степени k = n (j (x) = (X - xi)k), а коэффициенты Вi формулы (8) находятся в результате решения следующей системы уравнений:

где , k = 0, 1, . . ., n.

(9)

 

Символьное интегрирование и дифференцирование

 

Для вычисления интегралов (или нахождения первообразных) аналитически заданной функции используется командаSymbolic Þ Integrate on Variable (Интегрировать по переменной). Она возвращает символьное значение неопределенного интеграла по указанной маркером ввода переменной. Выражение, в состав которого входит переменная, является подынтегральной функцией.

Команда Symbolic Þ Differentiate on Variable (Дифференцировать по переменной) возвращает символьное значение производной выражения по той переменной, которая указана курсором. Для вычисления производных высшего порядка нужно повторить вычисление необходимое число раз.

Результат символьного преобразования иногда содержит специальные функции, которые не являются частью спискавстроенных функций Mathcad. Вот определения некоторых из них:

g - константа Эйлера,

Ci(x) = g + ln(x) + , Si(x) = ,

Chi(x) = g + ln(x) + , Shi(x) = .

 

Порядок выполнения лабораторной работы 5

 

Задание 1. Определить функцию f(x) таблично, вычислив значения уi = f(xi) в точках хi = a + h i, i = 0, 1, ..., 8,

h=(b - a)/8 на отрезке [a, b].

 

Варианты задания 1

 

варианта

f(x)

[a, b]

[c, d]

1

[0.4, 0.8]

[2, 2.1]

2

2

[0.8, 1.6]

[-1, -0.9]

3

1/(x)

[0.18, 0.98]

[0.5, 0.6]

4

[0.8, 1.6]

[2, 2.1]

5

x2  

[0, 0.4]

[1.5, 1.6]

6

x2  

[0.8, 1.6]

[1, 1.1]

7

[0.4, 1.2]

[2, 2.1]

8

2

[0.8, 1.2]

[1, 1.1]

9

(x + 1) sin x

[1, 5]

[1, 1.1]

10

5x + x lg x

[0.2, 1]

[1.3, 1.4]

11

(2x + 3) sin x

[0.4, 1.2]

[0.5, 0.6]

12

[0.4, 1.2]

[1, 1.1]

13

1/(1 + x + x2)

[0, 4]

[2, 2.1]

14

[0.4, 0.8]

[1.5, 1.6]

15

[0.4, 1.2]

[0.5, 0.6]

Задание 2. Вычислить интеграл :

  •  с помощью встроенного оператора интегрирования;
  •  по формуле прямоугольников;
  •  по формуле Симпсона;
  •  с помощью встроенного оператора интегрирования и интерполяцией табличной функции кубическим сплайном(функции cspline и interp);
  •  методом неопределенных коэффициентов для численного интегрирования.

Задание 3. Вычислить интеграл  методом Монте-Карло. Для этого необходимо:

  •  определить диапазон случайных чисел, например j: = 0..1000;
  •  определить с помощью функции rnd равномерно распределенную случайную величину h на отрезке интегрирования [a, b];
  •  создать вектор Fj = f(h j);
  •  с помощью функции mean вычислить интеграл.

Задание 4. Найти первообразную аналитически заданной функции f(x), используя команду Symbolic Þ Integrate on Variable.

Задание 5. Вычислить значения первой и второй производных функции f(x) в точке Х = с:

  •  с помощью операторов дифференцирования Mathcad;
  •  методом неопределенных коэффициентов для численного дифференцирования. Определить функцию f(x) таблично, вычислив значения уi = f(xi) в точках хi = с + h? i, i = 0, 1, ..., 10, h = 0.01 на отрезке [c, d].

Задание 6. Определить символьное значение первой и второй производных f(x), используя команду Symbolic ÞDifferentiate on Variable.


 

А также другие работы, которые могут Вас заинтересовать

28112. электрообеспечение учет работ по заявкам жителей плановые ремонтные работы. 2.79 MB
  data Array1 db 1234 Array2 db 1 dup OFFh Array3 dw 1000h 2000h 3000h 4000h 5000h Array4 dw 5 dup0 Array5 dd 12345 Array6 db €œABCDEFG€ 0 mov axArray3 mov ax ptr Array2 mov bl byte ptr Array3 mov cx word ptr Array1 mov dx byte ptr Array5 mov dx dword ptr Array4 mov cx dword ptr Array2 mov si offset Array5 4.
28114. Визначить основні абстракції підсистеми, опис якої наведено у завданні. Виконайте синтез інформаційної системи у вигляді діаграми класів за принципом ВСЕ 3.57 MB
  У порту є кілька доків які можуть приймати кораблі різного класу. Ведеться облік кораблів які входять чи виходять з порту дата вид корабля тоннаж пункт призначення судновласник час знаходження в порту перевезений вантаж. Вхід і вихід з порту відбувається з дозволу начальника порту.
28118. Визначить основні абстракії підсистеми, опис якої наведено у завданні. Виконайте ситез інформаційної системи у вигляді діаграми класів за принципом ВСЕ 32.5 KB
  Розробити клас і створити в середовищі MS Visual C DLL що містить опис цього класу. Скласти і відлагодити Wіndowsпрограму в середовищі MS Visual C в якій підключається DLL створюється обєкт класу опис якого міститься у DLL і демонструються його методи. клас методи Підключення DLL вектор Створення відображення циклічний зсув елементів на завдану кількість позицій явне.