71068

Численное интегрирование и дифференцирование

Лабораторная работа

Информатика, кибернетика и программирование

Дело в том что для большого числа элементарных функций первообразные уже не выражаются через элементарные функции в результате чего нельзя вычислить определенный интеграл с помощью формулы Ньютона-Лейбница. Особенно важны формулы приближенного интегрирования при решении задач содержащих функции заданные таблично.

Русский

2014-11-01

150 KB

4 чел.

Лабораторная работа 2
Численное интегрирование и дифференцирование

 

Численное интегрирование Численное дифференцирование ~ Символьное интегрирование и дифференцирование ~Порядок выполнения лабораторной работы 5

 

Численное интегрирование

Формулы для приближенного вычисления определенных интегралов применяются очень часто. Дело в том, что для большого числа элементарных функций первообразные уже не выражаются через элементарные функции, в результате чего нельзя вычислить определенный интеграл с помощью формулы Ньютона-Лейбница.

Встречаются также и случаи, когда приходится прибегать к формулам приближенного интегрирования даже для таких интегралов, которые могут быть найдены в конечном виде, но такое выражение оказывается слишком сложным. Особенно важны формулы приближенного интегрирования при решении задач, содержащих функции, заданные таблично.

Квадратурные формулы

Наиболее распространенным подходом к численному вычислению интеграла

(1)

является разбиение отрезка [a, b] на n равных частей а = х0 х1< . . . < хn = b c шагом h = , интерполирование функции f(x) на отрезке [a, b] (получение интерполяционного многочлена j (x)) и замена в (1) интеграла интегральной суммой:

In » I.

(2)

Соотношения вида (2) называют квадратурными формулами.

В простейших случаях в качестве интерполяционного многочлена j (x) берут ступенчатую, кусочно-линейную или кусочно-параболическую функции, а также полином степени k = n (j (x) = xk) для которых квадратурные формулы принимают вид (см. Пример 1 Рисунка 8):

Рисунок 8. Численное интегрирование и дифференцирование

 

формула прямоугольников:

  i = 1, 2, . . ., n;

(3)

формула трапеций:

;

(4)

формула Симпсона (n - четное число):

;

(5)

метод неопределенных коэффициентов состоит в вычислении определенного интеграла (1) с помощью формулы (2) коэффициенты Аi, которой находятся в результате решения следующей системы уравнений:

где , k = 0, 1, . . ., n.

(6)

Метод Монте-Карло

 

Во многих задачах исходные данные носят случайный характер, поэтому для их решения должен применяться статистико-вероятностный подход. На основе такого подхода и построен метод статистических испытаний, называемый также методом Монте-Карло.

Пусть h - равномерно распределенная на отрезке [a, b] случайная величина, :

.

(7)

Для генерирования последовательности случайных чисел с нормальным законом распределения в Mathcad возможно использовать функцию rnd

rnd(x)

Возвращает равномерно распределенное случайное число между 0 и х.

Для реализации метода Монте-Карло удобно использовать функцию mean

mean(A)

Возвращает среднее арифметическое значение элементов массива А.

Численное дифференцирование

Численное дифференцирование аналитически или таблично заданной функции f(x) на отрезке [a, b] в точке х = Хзаключается в замене f(x) интерполяционным полиномом j (x), i?iecaiaiua  которого можно найти аналитически с помощью соответствующих формул:

.

(8)

Метод неопределенных коэффициентов (см. Пример 2 Рисунка 8) предполагает использование в качестве интерполяционного многочлена j (x) полином степени k = n (j (x) = (X - xi)k), а коэффициенты Вi формулы (8) находятся в результате решения следующей системы уравнений:

где , k = 0, 1, . . ., n.

(9)

 

Символьное интегрирование и дифференцирование

 

Для вычисления интегралов (или нахождения первообразных) аналитически заданной функции используется командаSymbolic Þ Integrate on Variable (Интегрировать по переменной). Она возвращает символьное значение неопределенного интеграла по указанной маркером ввода переменной. Выражение, в состав которого входит переменная, является подынтегральной функцией.

Команда Symbolic Þ Differentiate on Variable (Дифференцировать по переменной) возвращает символьное значение производной выражения по той переменной, которая указана курсором. Для вычисления производных высшего порядка нужно повторить вычисление необходимое число раз.

Результат символьного преобразования иногда содержит специальные функции, которые не являются частью спискавстроенных функций Mathcad. Вот определения некоторых из них:

g - константа Эйлера,

Ci(x) = g + ln(x) + , Si(x) = ,

Chi(x) = g + ln(x) + , Shi(x) = .

 

Порядок выполнения лабораторной работы 5

 

Задание 1. Определить функцию f(x) таблично, вычислив значения уi = f(xi) в точках хi = a + h i, i = 0, 1, ..., 8,

h=(b - a)/8 на отрезке [a, b].

 

Варианты задания 1

 

варианта

f(x)

[a, b]

[c, d]

1

[0.4, 0.8]

[2, 2.1]

2

2

[0.8, 1.6]

[-1, -0.9]

3

1/(x)

[0.18, 0.98]

[0.5, 0.6]

4

[0.8, 1.6]

[2, 2.1]

5

x2  

[0, 0.4]

[1.5, 1.6]

6

x2  

[0.8, 1.6]

[1, 1.1]

7

[0.4, 1.2]

[2, 2.1]

8

2

[0.8, 1.2]

[1, 1.1]

9

(x + 1) sin x

[1, 5]

[1, 1.1]

10

5x + x lg x

[0.2, 1]

[1.3, 1.4]

11

(2x + 3) sin x

[0.4, 1.2]

[0.5, 0.6]

12

[0.4, 1.2]

[1, 1.1]

13

1/(1 + x + x2)

[0, 4]

[2, 2.1]

14

[0.4, 0.8]

[1.5, 1.6]

15

[0.4, 1.2]

[0.5, 0.6]

Задание 2. Вычислить интеграл :

  •  с помощью встроенного оператора интегрирования;
  •  по формуле прямоугольников;
  •  по формуле Симпсона;
  •  с помощью встроенного оператора интегрирования и интерполяцией табличной функции кубическим сплайном(функции cspline и interp);
  •  методом неопределенных коэффициентов для численного интегрирования.

Задание 3. Вычислить интеграл  методом Монте-Карло. Для этого необходимо:

  •  определить диапазон случайных чисел, например j: = 0..1000;
  •  определить с помощью функции rnd равномерно распределенную случайную величину h на отрезке интегрирования [a, b];
  •  создать вектор Fj = f(h j);
  •  с помощью функции mean вычислить интеграл.

Задание 4. Найти первообразную аналитически заданной функции f(x), используя команду Symbolic Þ Integrate on Variable.

Задание 5. Вычислить значения первой и второй производных функции f(x) в точке Х = с:

  •  с помощью операторов дифференцирования Mathcad;
  •  методом неопределенных коэффициентов для численного дифференцирования. Определить функцию f(x) таблично, вычислив значения уi = f(xi) в точках хi = с + h? i, i = 0, 1, ..., 10, h = 0.01 на отрезке [c, d].

Задание 6. Определить символьное значение первой и второй производных f(x), используя команду Symbolic ÞDifferentiate on Variable.


 

А также другие работы, которые могут Вас заинтересовать

44899. Принципы и технологии оценки недвижимости 13.6 KB
  Оценка недвижимости это прежде всего оценка прав собственности на данную недвижимость. Отсюда следует что оценка недвижимости должна включать оценку самой недвижимости оценку права собственности или права пользования землей или зданиями. Основные принципы оценки недвижимости: Принцип спроса и предложения: заключается в учете действия закона спроса и предложения на стоимость объекта недвижимости.
44900. Представления. Отличие представления от базовых переменных отношения 28.5 KB
  Представления. Отличие представления от базовых переменных отношения. CRETE TBLE ЕМР Однако реляционные системы обычно поддерживают еще один вид именованных переменных отношений называемых представлениями В любой конкретный момент их значение является производным отношением и поэтому упрощенно можно считать что представление это производная переменнаяотношение. Значение данного представления в данное время является результатом вычисления определенного реляционного выражения в данный момент а упомянутое реляционное выражение...
44903. The USA. Соединенные Штаты Америки 16.29 KB
  The United States of America is the fourth largest country in the world (after Russia, Canada, and China). It occupies the southern part of North America and stretches from the Pacific to the Atlantic Ocean. It also includes Alaska in the north and Hawaii in the Pacific Ocean.
44905. Основные принципы обучения РЯ в школе 16.17 KB
  Специальные: общеметодические и частнометодические: экстра-лингвистический сопоставление языка и реалий функциональный коммуникативный показ функций языковых единиц речи структурно-семантический изучение языковых явлений с точки зрения строения и значения функциональносемантический межуровневых и внутриуровневых связях нормативностилистический обучение учащихся правильной и выразительной речи исторический учет исторических изменений языка. Эстетический отбор понятий направленных на раскрытие прекрасного в...
44906. Ударение и его типы. Интонация и её конструкции. Паузация и темп русской речи 27.5 KB
  Словесное ударение это более сильное произношение одного слога в слове служащее для фонетического объединения этого слова. В русском языке ударение зависит от силы выдоха поэтому оно силовое и динамическое. В русском языке нет определенного зафиксированного места ударения оно может падать на любой слог разноместное ударение: мама собака. Русское словесное ударение также является подвижным 2 так как при переходе слова из одной формы в другую может меняться и место ударения в слове: стена' сте'ны.
44907. Орфоэпические нормы 16.48 KB
  Иное произношение звуков воспринимается как неправильное приводит к нарушению законов фонетического языка. Современное русское произношение сложилось в ревой половине 18 века. К началу 19 века староманерное произношение как общественное стало национальной нормой. Произношение согласных.