71069

Решение дифференциальных уравнений в частных производных

Лабораторная работа

Математика и математический анализ

В этом случае решаемые уравнения содержат частные производные и называются дифференциальными уравнениями в частных производных. Такие разностные уравнения записывают для всех узлов сетки и получают в результате систему из n уравнений с nнеизвестными. Гиперболические уравнения в частных производных...

Русский

2014-11-01

276.5 KB

6 чел.

Лабораторная работа 3
Решение дифференциальных уравнений в частных производных

 

Метод конечных разностейГиперболические уравнения в частных производных ~ Параболические уравнения в частных производных ~ Эллиптические уравнения в частных производных ~ Порядок выполнения лабораторной работы 7

 

На практике часто приходится сталкиваться с задачами, в которых искомая величина зависит от нескольких переменных. В этом случае решаемые уравнения содержат частные производные и называются дифференциальными уравнениями в частных производных. К сожалению, очень многие из таких уравнений не имеют аналитического решения, и чтобы решить их, приходиться прибегать к численным методам. Для решения дифференциальных уравнений в частных производных численно используется метод конечных разностей.

 

Метод конечных разностей

Численное решение дифференциальных уравнений в частных производных методом конечных разностей состоит в следующем:

  1.  Построение в области решения равномерной сетки, содержащей узловых точек (Рисунок 12).

Рисунок 12. Двумерная сетка

 

  1.  Представление производных в конечно-разностной форме:

, ,

(1)

,  и т. д.,

где i,  ji + 1,  ji - 1,  j,  j + 1, i,  j  -  1 - значения функции f(x, y) в точках (xi, yj), (x+ h, yj), (x- h, yj), (xi, y+ l), (xi, y- l) соответственно.

Такие разностные уравнения записывают для всех узлов сетки и получают в результате систему из n уравнений с nнеизвестными.

  1.  Решение полученной системы с целью получения приближённого решения в узлах сетки.

Гиперболические уравнения в частных производных

 

Простейшим видом уравнения гиперболического типа является волновое уравнение. К исследованию волнового уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала и т. п.

Рассмотрим одномерное уравнение колебаний струны. В области  требуется найти решение уравнения:

,

(2)

Искомая функция u(x, t) должна удовлетворять начальным условиям, описывающим начальную (t = 0) форму струны j(x) и скорость её точек y (x):

, , 0  x l

(3)

и граничным условиям, указывающим, что происходит на концах струны (х = 0 и х = l):

, , 0  tT.

(4)

Совокупность начальных и граничных условий называется краевыми условиями.

Для построения разностной схемы решения задачи (2) - (4) построим в области  сетку xi = i h= 0, 1, ..., n, l = h  n, tj = j t = 0, 1, ..., m, T= t   m и аппроксимируем уравнение (2) в каждом внутреннем узле сетки на шаблоне “крест” (Рисунок 13).

 

 

Рисунок 13. . Шаблон для волнового уравнения

 

Используя для аппроксимации частных производных выражения (1), получаем следующую разностную аппроксимацию уравнения (2):

.

(5)

Решая уравнение (6) относительно единственного неизвестного значения , получаем следующую схему:

,

l = а2t 2 / h2, i = 1, ..., n - 1, j = 1, ..., m - 1.

(6)

Схема (6) называется трехслойной потому, что связывает между собой значения  функции u(x, t) на трех временных слоях с номерами: j - 1, jj + 1. Схема (6) является явной, т.е. позволяет в явном виде выразить  через значения uс предыдущих двух слоев.

Для начала счета по схеме (6) необходимы значения  функции u(x, t) на нулевом (j = 0) и первом (j = 1) временных слоях. Они определяются начальными условиями (3) и записываются в виде:

, , = 0, 1, ..., n.

(7)

Граничные условия (4) также записываются в сеточном виде:

, , = 0, 1, ..., m.

(8)

Таким образом, решение исходной дифференциальной задачи (2) - (4) сводится к решению разностной задачи (6) - (8).

Схема устойчива, если выполнено условие Куранта .

 

Параболические уравнения в частных производных

 

Простейшим видом уравнения параболического типа является уравнение теплопроводности, или уравнение Фурье. К исследованию уравнения теплопроводности, или уравнения Фурье, приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, некоторые вопросы теории вероятностей.

Рассмотрим задачу о распространении тепла в однородном стержне длины l, на концах которого поддерживается заданный температурный режим. Задача состоит в отыскании функции u(x, t), удовлетворяющей в области {} уравнению

(9)

начальному условию

(10)

и граничным условиям

(11)


Рисунок 14. Шаблон для уравнения теплопроводности

 

Построим в области  равномерную прямоугольную сетку с шагом в направлении х и шагом t - в направлении (Рисунок 14). Тогда xi = i h= 0,1, ..., n, h = l / n; tj = j t = 0,1, ..., m, t =T / m .

Аппроксимируем дифференциальную задачу (9) - (11) на четырехточечном шаблоне, в результате получаем явную двухслойную разностную схему:

= 1, 2, ..., n - 1, j = 0, 1, ..., m - 1

, i = 0, 1, ..., n,

, , = 0, 1, ..., m,

.

 

 

 

(12)

 

Схема устойчива при l  1/2.

 

Эллиптические уравнения в частных производных

 

К исследованию такого уравнения приводит рассмотрение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики, диффузии и т. д. Рассмотрим решения уравнения Пуассона и его однородной формы - уравнения Лапласа.

Решение уравнения Пуассона будем искать в некоторой ограниченной области W =  изменения независимых переменных x, y:

(13)

Граничные условия:

u(0, y) =m1(y), u(ay) = m2(y), y I [0, b],

u(x, 0) = m3(x), u(xb) = m4(x), y I [0, a],

(14)

где fm1m2m3m4 - заданные функции (задача, состоящая в решении эллиптического уравнения при заданных значениях искомой функции на границе расчётной области, называется задачей Дирихле.).

Построим в области W равномерную прямоугольную сетку с шагами и l по х и соответственно: xi = i h= 0, 1, ..., n, h = q1 / n; yj = j l= 0, 1, ..., m, l=q 2 /m .

Аппроксимируем дифференциальную задачу (13) - (14) на шаблоне “крест” (Рисунок 13), в результате получаемнеявную трехслойную разностную схему:

,

 

(15)

Для решения уравнения Пуассона в Mathcad используется функция relax

 

relax(a, b, c, d, e, f, u, rjac)

Возвращает квадратную матрицу решения уравнения Пуассона. Здесь a ,b ,c, d, e - квадратные матрицы одинакового размера, содержащие коэффициенты уравнения (15); f - квадратная матрица, содержащая значения правой части уравнения (15) в каждой точке по области W , в которой ищется решение; u- квадратная матрица, содержащая граничные значения решения на границе области и начальное приближение для решения внутри области; rjac- число между 0 и 1, которое управляет сходимостью алгоритма.

При f = 0 получаем уравнение Лапласа:

(16)

Если для уравнения Лапласа в области W ввести сетку с равным шагом по осям х и y, то разностная схема (16) существенно упрощается

,

 

(17)

Решение уравнения Лапласа с помощью функции relax показано на Рисунке 15.

 

 

Рисунок 15. Решение уравнения Лапласа

 

Порядок выполнения лабораторной работы 7

 

Задание 1. Решить задачу о колебании струны единичной длины с закрепленными концами:

a = 1

с начальными условиями

u(x, 0) = f(x), , 0  x  1

и нулевыми граничными условиями

u(0, t) = u(1, t) =0.

 

Варианты задания 1

 

варианта

f(x)

a

b

варианта

f(x)

a

b

c

1

1

0.1

9

x sin ( 2 ( x - 1 ) )

 

 

 

2

2

0.1

10

x 3 ( x - 1 )

 

 

 

3

4

0.2

11

1

0.1

0.2

4

6

0.3

12

3

0.2

0.4

5

8

0.4

13

5

0.4

0.6

6

x 2 - 1)

 

 

14

7

0.6

0.8

7

sin ( p x 2 )

 

 

15

9

0.8

0.9

8

sin ( p ) cos x

 

 

 

 

 

 

 

 

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и провести вычисления для 16 слоев по t(j = 0, 1, ... 16). Вычисления выполнить с шагом h по х, равным 0.1 и шагом t по t, равным 0.05. Отобразить графически решение задачи на 0-ом, 5-ом, 10-ом и 16-ом временных слоях.

 

 

 

 

Задание 2. Найти решение u(х, t) для уравнения теплопроводности с постоянными коэффициентами:

a = 1

с начальными условиями

u(x, 0) = f(х) 0   x   1

и граничными условиями

u(0, t) = a, u(1, t) = b.

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и провести вычисления для 12 слоев по (j = 0, 1, ... 12). Вычисления выполнить с шагом h по х, равным 0.1 и шагом t по t, равным 0.005. Отобразить графически решение задачи на 0-ом, 4-ом, 8-ом и 12-ом слоях и построить интегральную поверхность распределения температуры в стержне с помощью команды Graphics Þ Create Surface Plot.

 

Варианты задания 2

 

варианта

f(x)

a

b

варианта

f(x)

a

b

1

x x - 1 )

0

0

9

2 + 0.5) cos(2p x)

0.5

1.5

2

3 + 2 - x

0

1

10

sin( p ) cos x

0

0

3

2 ( 1 - x )

0

0

11

x sin( 2 ( x - 1) )

0

0

4

1 4

1

0

12

l n (0.5 + ) ( x -1)

0.7

0

5

x sin (2 p x)

0

- 0.3

13

x sin( 4 ( x - 1) ) - x

0

-1

6

x - 1) sin 2 x

0

0

14

x cos (2 p x)

0

1

7

2 ( x - 1 )

0

0.5

15

x e x ( 4 - 2)

0

- 0.4

8

10 3 ( x - 1 )

0.5

0

 

 

 

 

Задание 3. Найти стационарное распределение температуры в квадратной пластине со стороной 1, описываемое уравнением Лапласа

с краевыми условиями вида

u(0, y) = f1(y), (0   y   1), u(1, y) = f2(y), (0   y   1),

u(x, 0) = f3(x), (0   x  1), u(x, 1) = f4(x), (0   x   1).

Решать задачу с помощью функции relax.

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и из 11 узлов по (j = 0, 1, ... 10). Отобразить графически с помощью команды Graphics Þ Create Contour Plot стационарное распределение температуры в пластине.

 

Варианты задания 3

 

варианта

f1(y)

f2(y)

f3(x)

f4(x)

1

y2

cos y + (2 - cos 1) y

x3

1 + x

2

e y - e y2

y

1 - x3

x2

3

1 - y2

y

sin x + 1 - x3(1 + sin 1)

x

4

0

y

sin xxsin 1

x

5

e y + y2 (1 - e) - 1

y

0

x

6

y2

cos y + (3 - cos 1) y

x3

1 + 2x

7

0

y

sin xxsin 1

x2

8

2ey - (1+2e) y2 1

- y

1 - x3

x - 2

9

- 10y2 - 8y + 6

- 10y2 - 30y + 22

9x2 + 7+ 6

9x2 - 15- 12

10

- 7y2 - 5y + 3

- 7y2 - 21y + 13

6x2 + 4+ 3

6x2 - 12- 9

11

1

y + 1

1

1 + x

12

1

e y

1

e x

13

y2 - 5y

4 + 5y2

x2 + 3x

x2 + 3+ 4

14

3 - 7y

7 - 6y

4x + 3

5x - 4

15

0

sin y

0

sin x


 

А также другие работы, которые могут Вас заинтересовать

54303. КОМУНІКАЦІЇ В МЕНЕДЖМЕНТІ 141 KB
  Методичне забезпечення: Роздатковий матеріал: Комплект карток Ситуаційні вправи з мотивацій в менеджменті Комплект карток Вправа на розпізнавання термінів Комплект карток Характерні ознаки комунікацій Комплект карток Ситуаційні вправи з комунікацій в менеджменті Ілюстративний матеріал схеми рисунки таблиці до теми Комунікації в менеджменті Наочні посібники: ПЕОМ MS PowerPoint Куточок Менеджеру на замітку Опорний конспект з курсу Менеджмент Термінологічний словник менеджера початківця Реферати та...
54304. Частини тіла 5 клас 169 KB
  Wir haben in der vorigen Stunde das Thema „ Der Mensch“ begonnen und haben die Körperteile des Menschen gelernt. Wie ihr diese Wörter kennt, zeigt ein Wortdiktat. Aber ihr werdet das Diktat nicht schreiben, sondern malen.
54305. СЕТЕВОЕ И КАЛЕНДАРНОЕ ПЛАНИРОВАНИЕ 750.5 KB
  В методических указаниях изложены основные особенности планирования и управления проектами. Рассмотрены основные шаги при составлении примерного плана-графика проекта создания требований к экономической и информационной безопасности для СДО ОАО РЖД с использованием Microsoft Project 2003 в среде Windows 2000/ХР. Рассмотрены основные средства Microsoft Project 2003 для эффективного управления всеми задачами и ресурсами проекта.
54306. Де творчість – там і успіх 73.5 KB
  А до звичайних учнів які не підходять здавалось би ні під яку категорію все якось не доходять руки. Їх можна обєднати в три групи: високий рівень управління системою виховної роботи який забезпечує досягнення найоптимальнішого за певних умов результату; високий рівень функціонування системи виховної роботи який обумовлює успішне виконання завдань поставлених перед навчальним закладом; високий рівень вихованості учнів їх готовності до самостійного життя та праці. Велика роль при цьому відводиться учнівському самоврядуванню.
54307. Як досягти триєдиної мети уроку 3.98 MB
  Працюючи над розробкою моделей уроків, треба прагнути побудувати їх на оптимальному поєднанні традиційних, перевірених часом принципів дидактики, таких як науковість, відповідність віковим особливостям з інноваційними підходами особистісно орієнтованого навчання.
54308. Створення блогу на порталі Мета 52.5 KB
  В своїй статті я написав про створення блогу у гуглівській службі Blogger а в цій зупинюся на створенні блогу на українському порталі Мета основна аудиторія якого зосереджена в Україні. На цій сторінці зліва в колонці під словом Авторизація виконуємо авторизацію блогу з логіном та паролем клацаючи нижче на зелений прямокутник Створити свій блог. 1980 Стать жінка Країна проживання Україна Регіон проживання Миколаївська область Місто переживання Миколаїв Додатковий еmil можна дати з інших порталів Контрольне питання Відповідь...
54309. РОБОТА З ТОНКОЛИСТОВИМ МЕТАЛОМ 59 KB
  Далі вчитель демонструє виріб який учні будуть виготовляти. Показуючи сокиру вчитель говорить що вона виготовлена з тонколистового металу який називається жерстю. Вчитель розповідає що для виготовлення виробу потрібно намалювати розгортку в зошиті виготовити макет із нелінованого паперу. Вчитель виконує розгортку на дошці а учні в зошиті.
54310. Кольорова металургія. Урок економічної і соціальної географії України з компютерною презентацією 1011.5 KB
  Які галузі входять до складу металургійного комплексу Яке місце в структурі промисловості посідає чорна металургія Що спільного у виробництві чорних і кольорових металів 3. 1 Кольорова металургія багатогалузева галузь промисловості яка включає видобуток збагачення руди виробництво різноманітних кольорових металів та їх сплавів. Особливістю кольорових металів є те що вони мають унікальні якості. До кольорових металів належать: Легкі алюміній титан магній; Важкі мідь свинець цинк олово нікель; Рідкісні ...
54311. Розвязування вправ та задач на додавання, віднімання та множення звичайних дробів 166.5 KB
  Сьогодні на уроці ми будемо з вами розвязувати приклади на різні дії зі звичайними дробами. Розвязавши приклади ми взнаємо що це за метали яка з них користь в яких продуктах вони знаходяться. кальцій Поки ми з разом розвязуємо перший приклад двоє учнів самостійно два наступних.