71069

Решение дифференциальных уравнений в частных производных

Лабораторная работа

Математика и математический анализ

В этом случае решаемые уравнения содержат частные производные и называются дифференциальными уравнениями в частных производных. Такие разностные уравнения записывают для всех узлов сетки и получают в результате систему из n уравнений с nнеизвестными. Гиперболические уравнения в частных производных...

Русский

2014-11-01

276.5 KB

4 чел.

Лабораторная работа 3
Решение дифференциальных уравнений в частных производных

 

Метод конечных разностейГиперболические уравнения в частных производных ~ Параболические уравнения в частных производных ~ Эллиптические уравнения в частных производных ~ Порядок выполнения лабораторной работы 7

 

На практике часто приходится сталкиваться с задачами, в которых искомая величина зависит от нескольких переменных. В этом случае решаемые уравнения содержат частные производные и называются дифференциальными уравнениями в частных производных. К сожалению, очень многие из таких уравнений не имеют аналитического решения, и чтобы решить их, приходиться прибегать к численным методам. Для решения дифференциальных уравнений в частных производных численно используется метод конечных разностей.

 

Метод конечных разностей

Численное решение дифференциальных уравнений в частных производных методом конечных разностей состоит в следующем:

  1.  Построение в области решения равномерной сетки, содержащей узловых точек (Рисунок 12).

Рисунок 12. Двумерная сетка

 

  1.  Представление производных в конечно-разностной форме:

, ,

(1)

,  и т. д.,

где i,  ji + 1,  ji - 1,  j,  j + 1, i,  j  -  1 - значения функции f(x, y) в точках (xi, yj), (x+ h, yj), (x- h, yj), (xi, y+ l), (xi, y- l) соответственно.

Такие разностные уравнения записывают для всех узлов сетки и получают в результате систему из n уравнений с nнеизвестными.

  1.  Решение полученной системы с целью получения приближённого решения в узлах сетки.

Гиперболические уравнения в частных производных

 

Простейшим видом уравнения гиперболического типа является волновое уравнение. К исследованию волнового уравнения приводит рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала и т. п.

Рассмотрим одномерное уравнение колебаний струны. В области  требуется найти решение уравнения:

,

(2)

Искомая функция u(x, t) должна удовлетворять начальным условиям, описывающим начальную (t = 0) форму струны j(x) и скорость её точек y (x):

, , 0  x l

(3)

и граничным условиям, указывающим, что происходит на концах струны (х = 0 и х = l):

, , 0  tT.

(4)

Совокупность начальных и граничных условий называется краевыми условиями.

Для построения разностной схемы решения задачи (2) - (4) построим в области  сетку xi = i h= 0, 1, ..., n, l = h  n, tj = j t = 0, 1, ..., m, T= t   m и аппроксимируем уравнение (2) в каждом внутреннем узле сетки на шаблоне “крест” (Рисунок 13).

 

 

Рисунок 13. . Шаблон для волнового уравнения

 

Используя для аппроксимации частных производных выражения (1), получаем следующую разностную аппроксимацию уравнения (2):

.

(5)

Решая уравнение (6) относительно единственного неизвестного значения , получаем следующую схему:

,

l = а2t 2 / h2, i = 1, ..., n - 1, j = 1, ..., m - 1.

(6)

Схема (6) называется трехслойной потому, что связывает между собой значения  функции u(x, t) на трех временных слоях с номерами: j - 1, jj + 1. Схема (6) является явной, т.е. позволяет в явном виде выразить  через значения uс предыдущих двух слоев.

Для начала счета по схеме (6) необходимы значения  функции u(x, t) на нулевом (j = 0) и первом (j = 1) временных слоях. Они определяются начальными условиями (3) и записываются в виде:

, , = 0, 1, ..., n.

(7)

Граничные условия (4) также записываются в сеточном виде:

, , = 0, 1, ..., m.

(8)

Таким образом, решение исходной дифференциальной задачи (2) - (4) сводится к решению разностной задачи (6) - (8).

Схема устойчива, если выполнено условие Куранта .

 

Параболические уравнения в частных производных

 

Простейшим видом уравнения параболического типа является уравнение теплопроводности, или уравнение Фурье. К исследованию уравнения теплопроводности, или уравнения Фурье, приводит рассмотрение процессов распространения тепла, фильтрации жидкости и газа в пористой среде, некоторые вопросы теории вероятностей.

Рассмотрим задачу о распространении тепла в однородном стержне длины l, на концах которого поддерживается заданный температурный режим. Задача состоит в отыскании функции u(x, t), удовлетворяющей в области {} уравнению

(9)

начальному условию

(10)

и граничным условиям

(11)


Рисунок 14. Шаблон для уравнения теплопроводности

 

Построим в области  равномерную прямоугольную сетку с шагом в направлении х и шагом t - в направлении (Рисунок 14). Тогда xi = i h= 0,1, ..., n, h = l / n; tj = j t = 0,1, ..., m, t =T / m .

Аппроксимируем дифференциальную задачу (9) - (11) на четырехточечном шаблоне, в результате получаем явную двухслойную разностную схему:

= 1, 2, ..., n - 1, j = 0, 1, ..., m - 1

, i = 0, 1, ..., n,

, , = 0, 1, ..., m,

.

 

 

 

(12)

 

Схема устойчива при l  1/2.

 

Эллиптические уравнения в частных производных

 

К исследованию такого уравнения приводит рассмотрение задач об электрических и магнитных полях, о стационарном тепловом состоянии, задач гидродинамики, диффузии и т. д. Рассмотрим решения уравнения Пуассона и его однородной формы - уравнения Лапласа.

Решение уравнения Пуассона будем искать в некоторой ограниченной области W =  изменения независимых переменных x, y:

(13)

Граничные условия:

u(0, y) =m1(y), u(ay) = m2(y), y I [0, b],

u(x, 0) = m3(x), u(xb) = m4(x), y I [0, a],

(14)

где fm1m2m3m4 - заданные функции (задача, состоящая в решении эллиптического уравнения при заданных значениях искомой функции на границе расчётной области, называется задачей Дирихле.).

Построим в области W равномерную прямоугольную сетку с шагами и l по х и соответственно: xi = i h= 0, 1, ..., n, h = q1 / n; yj = j l= 0, 1, ..., m, l=q 2 /m .

Аппроксимируем дифференциальную задачу (13) - (14) на шаблоне “крест” (Рисунок 13), в результате получаемнеявную трехслойную разностную схему:

,

 

(15)

Для решения уравнения Пуассона в Mathcad используется функция relax

 

relax(a, b, c, d, e, f, u, rjac)

Возвращает квадратную матрицу решения уравнения Пуассона. Здесь a ,b ,c, d, e - квадратные матрицы одинакового размера, содержащие коэффициенты уравнения (15); f - квадратная матрица, содержащая значения правой части уравнения (15) в каждой точке по области W , в которой ищется решение; u- квадратная матрица, содержащая граничные значения решения на границе области и начальное приближение для решения внутри области; rjac- число между 0 и 1, которое управляет сходимостью алгоритма.

При f = 0 получаем уравнение Лапласа:

(16)

Если для уравнения Лапласа в области W ввести сетку с равным шагом по осям х и y, то разностная схема (16) существенно упрощается

,

 

(17)

Решение уравнения Лапласа с помощью функции relax показано на Рисунке 15.

 

 

Рисунок 15. Решение уравнения Лапласа

 

Порядок выполнения лабораторной работы 7

 

Задание 1. Решить задачу о колебании струны единичной длины с закрепленными концами:

a = 1

с начальными условиями

u(x, 0) = f(x), , 0  x  1

и нулевыми граничными условиями

u(0, t) = u(1, t) =0.

 

Варианты задания 1

 

варианта

f(x)

a

b

варианта

f(x)

a

b

c

1

1

0.1

9

x sin ( 2 ( x - 1 ) )

 

 

 

2

2

0.1

10

x 3 ( x - 1 )

 

 

 

3

4

0.2

11

1

0.1

0.2

4

6

0.3

12

3

0.2

0.4

5

8

0.4

13

5

0.4

0.6

6

x 2 - 1)

 

 

14

7

0.6

0.8

7

sin ( p x 2 )

 

 

15

9

0.8

0.9

8

sin ( p ) cos x

 

 

 

 

 

 

 

 

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и провести вычисления для 16 слоев по t(j = 0, 1, ... 16). Вычисления выполнить с шагом h по х, равным 0.1 и шагом t по t, равным 0.05. Отобразить графически решение задачи на 0-ом, 5-ом, 10-ом и 16-ом временных слоях.

 

 

 

 

Задание 2. Найти решение u(х, t) для уравнения теплопроводности с постоянными коэффициентами:

a = 1

с начальными условиями

u(x, 0) = f(х) 0   x   1

и граничными условиями

u(0, t) = a, u(1, t) = b.

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и провести вычисления для 12 слоев по (j = 0, 1, ... 12). Вычисления выполнить с шагом h по х, равным 0.1 и шагом t по t, равным 0.005. Отобразить графически решение задачи на 0-ом, 4-ом, 8-ом и 12-ом слоях и построить интегральную поверхность распределения температуры в стержне с помощью команды Graphics Þ Create Surface Plot.

 

Варианты задания 2

 

варианта

f(x)

a

b

варианта

f(x)

a

b

1

x x - 1 )

0

0

9

2 + 0.5) cos(2p x)

0.5

1.5

2

3 + 2 - x

0

1

10

sin( p ) cos x

0

0

3

2 ( 1 - x )

0

0

11

x sin( 2 ( x - 1) )

0

0

4

1 4

1

0

12

l n (0.5 + ) ( x -1)

0.7

0

5

x sin (2 p x)

0

- 0.3

13

x sin( 4 ( x - 1) ) - x

0

-1

6

x - 1) sin 2 x

0

0

14

x cos (2 p x)

0

1

7

2 ( x - 1 )

0

0.5

15

x e x ( 4 - 2)

0

- 0.4

8

10 3 ( x - 1 )

0.5

0

 

 

 

 

Задание 3. Найти стационарное распределение температуры в квадратной пластине со стороной 1, описываемое уравнением Лапласа

с краевыми условиями вида

u(0, y) = f1(y), (0   y   1), u(1, y) = f2(y), (0   y   1),

u(x, 0) = f3(x), (0   x  1), u(x, 1) = f4(x), (0   x   1).

Решать задачу с помощью функции relax.

Для решения задачи построить сетку из 11 узлов по (= 0, 1, ... 10) и из 11 узлов по (j = 0, 1, ... 10). Отобразить графически с помощью команды Graphics Þ Create Contour Plot стационарное распределение температуры в пластине.

 

Варианты задания 3

 

варианта

f1(y)

f2(y)

f3(x)

f4(x)

1

y2

cos y + (2 - cos 1) y

x3

1 + x

2

e y - e y2

y

1 - x3

x2

3

1 - y2

y

sin x + 1 - x3(1 + sin 1)

x

4

0

y

sin xxsin 1

x

5

e y + y2 (1 - e) - 1

y

0

x

6

y2

cos y + (3 - cos 1) y

x3

1 + 2x

7

0

y

sin xxsin 1

x2

8

2ey - (1+2e) y2 1

- y

1 - x3

x - 2

9

- 10y2 - 8y + 6

- 10y2 - 30y + 22

9x2 + 7+ 6

9x2 - 15- 12

10

- 7y2 - 5y + 3

- 7y2 - 21y + 13

6x2 + 4+ 3

6x2 - 12- 9

11

1

y + 1

1

1 + x

12

1

e y

1

e x

13

y2 - 5y

4 + 5y2

x2 + 3x

x2 + 3+ 4

14

3 - 7y

7 - 6y

4x + 3

5x - 4

15

0

sin y

0

sin x


 

А также другие работы, которые могут Вас заинтересовать

78586. Комахи в нашому житті 330 KB
  Мета: уточнити уявлення учнів про комах, поширити знання про цих тварин, учити називати істотні ознаки комах, їх будову; розвивати мовленнєві навички, мислення, увагу, спостережливість; виховувати бережливе ставлення до тварин, любов до природи.
78587. Як доглядати за кімнатними рослинами? 52.5 KB
  Мета: формувати уявлення про кімнатні рослини, про залежність від їх потреб в освітленні, поливі, освітленні, пересадці. Розвивати практичні уміння і навички доглядати за кімнатними рослинами (розташування в приміщенні, поливі, розпушуванні ґрунту, пересадка, розмноження).
78588. Осінь. Рослини восени. Як тварини готуються до зими 72.5 KB
  Обладнання: таблиці ілюстрації осінь у парку у лісі на городі осінні листочки костюми Осені білочки їжачка корони місяців овочі та фрукти дари осені малюнки дітей. Під слова вчителя виходить дівчина Осінь розтрушує листочки Осінь хазяйнує скрізь куди не поглянь.
78589. Тварини взимку. Як зимують птахи? 121 KB
  Мета: формувати уявлення про світ птахів; вчити дітей здійснювати проектну діяльність на основі колективно вироблених завдань; розвивати творчий підхід до розвязання поставленої проблеми усне мовлення громадську та соціальну компетентності; виховувати любов до птахів прагнення не тільки спостерігати...
78590. ВОДОЁМЫ. РОДНИК 55 KB
  Формировать первичные знания, развивать стремление больше знать; ознакомив с литературой, вызвать желание больше читать, Заранее планируя свой выбор; учить умение высказывать свою точку зрения, опираясь на знания и опыт; воспитывать бережное отношение к водоемам, экономное использование пресной воды.
78591. Рідний край, де ми живемо, Україною зовемо 78 KB
  Обладнання: карта України державні символи України картки для роботи в парах зошит Я і Україна кросворд ілюстрації з краєвидами Києва різнокольорові паперові квітки недомальовані смайлики. Люби шануй оберігай Усе що зветься Україна.
78592. Зовнішня будова рослин. Рослини - живі організми. Рослини - джерело поживних речовин і кисню на Землі 97.5 KB
  Поглибити поняття органів рослин; сформувати уявлення про значення кожного органу (кореня, стебла, листків, квіток, плодів з насінням) для рослини, про особливості живлення і дихання рослин; уміння розрізняти органи рослин, називати їх; розвиток пізнавальних інтересів учнів...
78593. Кругообіг води в природі. Вода має бути чистою 155 KB
  Продовжити формувати поняття вода уявлення про умови перетворення води з одного стану в інший про кругообіг води в природі про необхідність бережного використання її. Обладнання: склянки з водою кусочки льоду скляна пляшка з замороженою водою; таблиця Кругообіг води в природі...
78594. ПІДСУМКОВИЙ УРОК ПО ТЕМІ «ТВАРИНИ» 44 KB
  Мета: Узагальнити і систематизувати знання учнів про найбільші групи тварин, розвивати вміння порівнювати варини,класифікувати їх за суттєвими ознаками, встановлювати взаємозв’язки з неживою природою; розвивати спостережливість,вміння аналізувати, робити висновки; виховувати шанобливе ставлення до тварин.