71098

Производственный шум

Лекция

Безопасность труда и охрана жизнедеятельности

Действие шума на организм человека Шум определяют как всякий нежелательный для человека звук. Проявление вредного воздействия шума на организм весьма разнообразно. Специфическое воздействие шума действие на слуховой анализатор. Длительное воздействие интенсивного шума выше 80 дБ А на слух человека приводит к его частичной или полной потере.

Русский

2014-11-01

164 KB

15 чел.

Лекция 5   Производственный шум

1. Действие шума на организм человека

Шум определяют как всякий нежелательный для человека звук. Другими словами, это звук, оцениваемый негативно и наносящий вред здоровью. с физической точки зрения шум – это беспорядочное сочетание звуков различной частоты и интенсивности (силы), возникающих при механических колебаниях в твердых, жидких и газообразных средах. Проявление вредного воздействия шума на организм весьма разнообразно.

Специфическое воздействие шума (действие на слуховой анализатор). Длительное воздействие интенсивного шума (выше 80 дБ (А*)) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, которое выражается либо:

а) во временном смещении порога слышимости, которое исчезает после окончания воздействия шума;

б) в необратимой  потере слуха (тугоухость), характеризуемой постоянным изменением порога слышимости.

Для профилактической работы по обеспечению безопасных условий труда по шумовому фактору служит аудиометрический контроль (аудиометрия) работающих, проводимый для оценки состояния органов слуха. При этом состояние слуховой функции оценивают как среднеарифметическое значение снижения  слуховой чувствительности в диапазоне речевых частот (500-2000 Гц) и на частоте 4000 Гц.

Различают три степени потери слуха:

- 1 степень (легкое снижение слуха) - потеря слуха в области речевых частот составляет 10 20 дБ (на частоте 4000 Гц - 60 20 дБ),

- II степень (умеренное снижение) - 21 30 дБ в области речевых частот, 65 20 на 4000 Гц,

- III степень (значительное снижение) - более 31 дБ на речевых частотах, 78 20 дБ на 4000 Гц.

Как показывают исследования, тугоухость в последние годы выходят на ведущее место среди профессиональных заболеваний и не обнаруживает тенденции к снижению.

Неспецифическое воздействие шума. Шум воздействует не только на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Установлено, что человек, подвергающийся воздействию интенсивного шума, затрачивает на 10 - 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую при уровне звука ниже 70 дБ (А). Общая заболеваемость рабочих шумных производств на 10 15% выше.

Воздействие шума на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 - 70 дБ(А)) и не зависит от субъективного восприятия шума человеком. Наиболее ярко выраженной вегетативной реакцией является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также (при уровнях звука выше 85 дБ (А)) повышение артериального давления.

Воздействие шума на ЦНС вызывает замедление зрительно-моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 - 60 дБ (А)), существенно изменяет биопотенциалы мозга, вызывает биохимические изменения в структурах головного мозга.

Шумовая болезнь. Для описания комплекса симптомов, связанных как со специфическим, так и с неспецифическим воздействием шума, существует термин «шумовая болезнь». К объективным симптомам шумовой болезни относятся:

- снижение слуховой чувствительности,

- изменение функции пищеварения (снижение кислотности)

- сердечно-сосудистая недостаточность,

- нейро-эндокринные расстройства.

Субъективными симптомами являются:

- раздражительность,

- головные боли,

- головокружение,

- снижение памяти,

- повышенная утомляемость,

- потеря аппетита,

- боли в ушах и т.д.

Эти явления нарастают с увеличением периода, в течение которого человек подвергается действию шума, т.е. шумовые явления обладают свойством кумуляции. При длительном воздействии шума возможно возникновение заболеваний сердечно-сосудистой системы, гипертоническая болезнь, язвенная болезнь.

До последнего времени оценка приемлемости производственного шума с уровнем выше 80 дБ (А) чаще всего основывалась на выявлении его воздействия на органы слуха. Теперь доказано, что и шумы средних уровней (ниже 80 дБ (А)), не вызывающие потери слуха, тем не менее оказывают неблагоприятное воздействие на организм в целом, что должно было в последние годы при нормировании шума.

В современных условиях шум - это один из серьезных факторов загрязнения окружающей среды; связанный с ростом городов, развитием транспорта, промышленности, бытовой техники). Основным источником шума в городах является транспорт. Уровень шума в крупных городах достиг интенсивности промышленных шумов (80-100 дБ).

Производственный шум затрудняет прием и передачу информации, что приводит к снижению эффективности  и безопасности труда. Высокий уровень шума мешает, в частности, услышать сигнал опасности.  Уровень интенсивности шума на частоте 1000 Гц, равный 70 дБ считается предельным уровнем, при котором человек может еще понимать команды, произнесенные обычным голосом. При 75 дБ исключено исполнение телефонной связи. Для нормального приема и передачи информации по телефону уровень шума около телефонного аппарата не должен превышать 50 - 55 дБ. Под воздействием шума снижаются способность сосредоточения внимания, точность выполнения работ, особенно тех ее видов, которые связаны с приемом и передачей информации, а следовательно, производительность труда.

Рис. 1

2. Частотный диапазон звука

Ниже 20 Гц и выше 20 кГц находятся соответственно области неслышимых человеком инфра- и ультразвука. Кривые, расположенные между кривой порога болевого ощущения и кривой порога слышимости называются кривыми равной громкости и отражают различие в восприятии звука человеком на разных частотах.

Поскольку звуковые волны представляют собой колебательный процесс, величины интенсивности звука и звуковое давление в точке звукового поля изменяются во времени по синусоидальному закону. Характерными величинами являются их среднеквадратичные значения. Зависимость среднеквадратичных значений синусоидальных составляющих шума или соответствующих им уровней в децибелах от частоты называется частотным спектром шума (или просто спектром). Спектры получают, используя  набор электрических фильтров, которые пропускают сигнал в определенной полосе частот - полосе пропускания.

Для получения частотной характеристики шума звуковой диапазон по частоте разбивается на полосы с определенным соотношением граничных частот  (рис.2)

Рис.2

Октавная полоса - полоса частот, в которой верхняя граничная частота fв равна удвоенной нижней частоте fн, т.е. fв/fн = 2. Например, если взять музыкальный звукоряд, то звук с частотой f = 262 Гц это «до» первой октавы. Звук с f = 262 x 2 = 524 Гц - «до» второй октавы. «Ля» первой октавы это 440 Гц, «Ля» второй - 880 Гц. Чаще всего применяется разбиение звукового диапазона именно на октавы, или октавные полосы. Октавная полоса характеризуется среднегеометрической частотой

                               _____

f с.г. = fн  fв

В некоторых случаях (детальное исследование источников шума, эффективности звукоизоляции) используют деление на полуоктавные полосы (fв/fн = ) и третьеоктавные полосы (fв/fн = = 1,26).

3.  Измерение производственного шума

Звук характеризуется своей интенсивностью и звуковым давлением Р Па. Кроме этого, любой источник шума характеризуется звуковой мощностью, которая представляет собой общее количество звуковой энергии, излучаемой источником шума в окружающее пространство.

С учетом логарифмической зависимости ощущения от изменения энергии раздражителя (закон Вебера-Фехнера) и целесообразности унификации единиц и удобства оперирования с цифрами принято использовать не сами величины интенсивности, звукового давления и мощности, а их логарифмические уровни

LJ = 10 lg ,

где I – интенсивность звука в данной точке,  I0 – интенсивность звука, соответствующая порогу слышимости, равному 10-12 Вт/м,  Р – звуковое давление в данной точке пространства, Р0 – пороговое звуковое давление, равное 210-5 Па, Ф – мощность звука в данной точке, Ф0 - пороговая звуковая мощность, равная 10-12 Вт.

При нормальном атмосферном давлении

LJ = Lp = L

Для измерения шума с целью оценки его воздействия на человека, используется уровень звукового давления Lp (часто обозначается просто L). Уровень  интенсивности LJ используют при акустических расчетах помещений.

Рис.3

При оценке и нормировании шума используют также специфическую величину, называемую уровнем звука. Уровень звука - это общий уровень шума, измеренный по шкале А шумомера. В современных шумомерах используют обычно две характеристики чувствительности - «А» и «С» (см. рис.). Характеристика «С» практически линейна во всем измеряемом диапазоне и используется для исследования спектра шума. Характеристика «А» имитирует кривую чувствительности человеческого уха. Единица измерения уровня звука – Дб(А). Таким образом уровень в дБ(А) соответствует субъективному восприятию шума человеком.

4.  Классификация шума

4.1 Классификация шума по источникам возникновения

Механический шум. Механический шум обусловлен колебаниями деталей машин и их взаимным перемещением. Возбуждение механического шума обычно носит ударный характер, излучающие его конструкции и детали представляют собой системы с многочисленными резонансными частотами. Поэтому спектр механического шума занимает широкую область частот. Наличие высоких частот делают шум особо неприятным.

Аэрогидродинамический шум. Аэрогидродинамические шумы возникают при движении газов и жидкостей, их взаимодействия с твердыми телами (шумы из-за периодического выпуска газа в атмосферу, например, сирена, шумы из-за образования вихрей, отрывных течений, турбулентные шумы из-за перемешивания потоков и т.п.).

Электромагнитный шум. Электромагнитный шум возникает в электрических машинах и оборудовании из-за взаимодействия ферромагнитных масс под влиянием переменных (во времени и в пространстве) магнитных полей, а также сил, возникающие при взаимодействии магнитных полей, создаваемых токами.

  1.  Классификация по характеру спектра и временным характеристикам

В зависимости от спектра выделяют так называемый широкополосной, или белый шум, т.е. шум с непрерывным спектром шириной более одной октавы и тональный шум, в спектре которого имеются дискретные тона шириной менее одной октавы.

В зависимости от изменения по времени различают постоянный шум, под которым понимается  шум, при котором уровень звука за 8-часовой рабочий день изменяется во времени не более чем на 5 дБ(А). Если это изменение составляет более 5 дБ(А), то шум считается непостоянным.

Непостоянные шумы в свою очередь делается на колеблющиеся во времени, прерывистые и импульсные (см. рис.5).

а – колеблющийся шум,   б – прерывистый шум,   в – импульсный шум

Рис.5

5.  Нормирование производственного шума

При нормировании шума используют два метода: нормирование по предельному спектру шума и нормирование уровня звука в дбА.

Нормирование по предельному спектру. Этот метод является основным для постоянных шумов. Здесь нормируются уровни звуковых давлений в 8 октавных полосах частот с fсг = 63, 125, 250...8000 Гц. Совокупность восьми допустимых уровней звукового давления и называется предельным спектром (ПС).

Для каждой категории рабочих мест (конструкторские бюро, лаборатории, цеха и т.п.) регламентирован свой предельный спектр шума. Допустимые уровни звукового давления на рабочих местах приведены в ГОСТ 12.1.001-83

Нормирование уровня звука в дБА. Этот метод используется для ориентировочной оценки постоянного и непостоянного шума, когда мы не знаем спектра шума.

Уровень звука (дБА) связан с предельным спектром зависимостью: LA = ПС + 5

Для тонального и импульсного шумов допустимые уровни должны приниматься на 5 дБ меньше нормативных для постоянного шума.

Для оценки акустической энергии, воздействующей на человека за определенный период времени используется доза шума, скорректированная по частотной характеристике «А» шумомера Па2  r: D = PA2 T, где РА - звуковое давление, соответствующее измеренному уровню звука в дБА.

Допустимая доза шума - доза, соответствующая допустимому уровню звука или допустимому эквивалентному уровню звука.

Для непостоянного шума нормированным параметром является эквивалентный (по энергии) уровень звука широкополосного, постоянного и неимпульсного шума, оказывающего на человека такое же воздействие, как и непостоянный шум (Laэкв. дБА. Этот уровень измеряется специальными интегрирующими шумомерами.

6. Методы борьбы с шумом

При проектировании новых предприятий, производственных помещений необходимо принимать меры, чтобы шум в помещениях не превышал допустимых значений. Разработке мероприятий по борьбе с шумом должен предшествовать акустический расчет. Его задачами являются:

- определение уровня звукового давления в расчетной точке (РТ), когда известен источник шума и его шумовые характеристики;

- расчет необходимого снижения шума.

В качестве методов борьбы с шумом используются следущие:

6.1 Уменьшение шума в источнике (т.е. «защита количеством»)

Борьба с шумом в источнике (посредством уменьшения уровня звуковой мощности Lp) является наиболее рациональной. Конкретные мероприятия здесь зависят от природы шума (механический, аэрогидродинамический, электромагнитный). Так уменьшение механического шума может быть достигнуто путем совершенствования технологических процессов и оборудования. Для уменьшения аэрогидродинамического шума следует стремиться к уменьшению скоростей обтекания тел потоком среды (газовой или жидкой), к улучшению аэродинамических качеств обтекаемых тел. Снижение электромагнитного шума достигается путем конструктивных изменений в электрических машинах. Например, в трансформаторах необходимо применять более плотную прессовку пакетов, использовать демпфирующие материалы.

6.2. Изменение направленности излучения шума

Этот способ следует применять при проектировании установок с направленным излучением шума, соответствующим образом ориентируя эти установки по отношению к рабочим местам или жилым массивам.

6.3. Рациональная планировка предприятий и цехов

При планировке наиболее шумные цехи должны быть сконцентрированы в одном-двух местах. Расстояние между шумными цехами и помещениями, где должен поддерживаться низкий уровень шума (конструкторское бюро и т.п.) должно быть достаточным для обеспечения необходимого снижения шума. Если предприятие расположено в черте города, шумные цехи должны находиться в глубине его территории.

6.4 Акустическая обработка помещений

Этот метод основан на том факте, что интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука. В случаях, когда нет возможности уменьшить прямой звук, для снижения шума можно уменьшить энергию отражаемых волн. Это достигается увеличением эквивалентной площади звукопоглощения путем размещения на его внутренних поверхностях звукопоглощающих облицовок, а также установки в помещениях штучных звукопоглотителей.

Процесс поглощения звука происходит за счет перехода энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в порах материала. Поэтому для эффективного звукопоглощения материал должен обладать пористой структурой, причем поры должны быть открыты со стороны падения звука и быть незамкнутыми, чтобы не препятствовать проникновению звуковой волны в толщу материала.

Свойствами звукопоглощения обладают все строительные материалы. Однако звукопоглощающими материалами и конструкциями принято называть только те, у которых коэффициент звукопоглощения на средних частотах больше 0,2. Это прежде всего такие материалы как ультратонкое стекловолокно, минеральная вата, древесноволокнистые плиты, пористый поливинилхлорид, различные пористые жесткие плиты на цементной вяжущей основе и др.

У таких материалов как кирпич, бетон коэффициент звукопоглощение маn ( = 0,01 0,05). Звукопоглощающие облицовки снижают шум на 6-8 дБ в зоне отраженного звука (вдали от источника) и на 2-3 дБ вблизи источника. Но на высоких частотах облицовки эффективнее (8-10 дБ), таким образом, они позволяют сделать шум более глухим и, следовательно, менее раздражающим.

6.5 Уменьшение шума на пути его распространения   

Этот путь предусматривает применение звукоизолирующих ограждений (стены, перегородки, экраны, кожухи, кабины и т.п.). Сущность звукоизоляции ограждения состоит в том, что падающая на него звуковая энергия отражается в гораздо большей мере, чем проникает за ограждение. Звукоизолирующие свойства ограждения характеризуются коэффициентом звукопроницаемости

  =  , 1

где Рпр, Рпад, Jпр, Jпад - соответственно прошедшие через ограждения и падающие на него и соответствующие им значения интенсивностей.

Звукоизоляция ограждений тем выше, чем тяжелее материал, из которого они сделаны. Звукоизоляция одного и того же ограждения возрастает с увеличением частоты.

В отличие от звукопоглощающих конструкций звукоизолирующие конструкции должны быть выполнены из плотных, твердых и массивных материалов.

6.6 Глушение шума

Глушители шума применяются в основном для уменьшения шума различных аэродинамических установок и устройств. Они устанавливаются на воздуховодах, каналах, соплах и подразделяются на абсорбционные (поглощающие звуковую энергию), реактивные (отражающие звуковую энергию обратно к источнику) и комбинированные.

6.7 Экранирование шума

Экраны устанавливают между источником шума и рабочим местом. Эффект экранирования основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Эффективность экранирования зависит от соотношения между размерами экрана и длиной волны : чем больше длина волны, тем меньше при данных размерах область тени за экраном, следовательно, тем меньше снижение шума. Поэтому экраны применяют в основном для защиты от средне- и высокочастотного шума. На низких частотах ( велика) экраны малоэффективны, так как за счет эффекта дифракции звук легко их огибает.

Эффективность экрана тем выше, чем меньше расстояние от экранируемого рабочего места до источника шума.

Экраны эффективны, когда отсутствуют огибающие его отраженные волны, т.е. либо на открытом воздухе, либо в облицованном помещении, т.е. помещении, подвергнутом акустической обработке.

6.8 Средства индивидуальной защиты

К СИЗ от шума относятся  наушники, шлемы, каски. При уровнях звука L  135 дБА используются противошумные костюмы (типа жесткого скафандра).

Измерение шума – шумомеры ШУМ-1, ШМ-1, ИШВ-2 в комплекте с октавными фильтрами, полосовые фильтры, измерительные микрофоны, магнитофоны, самописцы и др., акустическая аппаратура зарубежных фирм.

7. Ультразвук. Нормирование и защита

Ультразвуковыми колебаниями называются колебания с f  20 кГц. У ультразвука та же природа, что и у звука.

Источники: оборудование, в котором генерируются ультразвуковые колебания для выполнения технологических операций (очистка и обезвреживание деталей, дефектоскопия, сварка, сушка, технический контроль) и оборудование, где ультразвук возникает как сопутствующий фактор.

Ультразвуковые колебания делятся на:

- низкочастотные  f  100 кГц (распространение воздушным и контактным путем) выраженные сдвиги в состоянии нервной, сердечно-сосудистой, эндокринной системах, обмене веществ и терморегуляции;

- высокочастотные 100 кГц  f  1000000 кГц (распространяется контактным путем) локальное воздействие при соприкосновении со средами, в которых распространяются ультразвуковые колебания (ультразвуковые вибрации).

Высокочастотный ультразвук большой интенсивности приводит в основном к тем же нарушениям, что и низкочастотный при контакте.

Воздействие ультразвуковой энергии 6 7 Вт/см2 может приводить к поражению периферического нервного и сосудистого аппарата в месте контакта (например, воздействие на руки в момент загрузки и выгрузки деталей из ультразвуковой ванны).

Характеристикой ультразвуковых колебаний является уровень звукового давления Ly в третьеоктавных полосах с fсг = 12,5 100 кГц.

Согласно ГОСТ 12.1.001-83 допустимые уровни звукового давления на рабочих местах не должны превышать (при fсг = 3,15 -100кГц) 110 Дб; при fсг = 12,5 кГц - 80 дБ).

Для ультразвука, передающегося контактным путем нормируется пиковое значение виброскорости.

Защита от ультразвука: 1) дистанционное управление, 2) автоблокировка при выполнении вспомогательных операций (загрузка и выгрузка деталей и т.п.), экранирование источника.

В качестве СИЗ (для рук): рукавицы, перчатки.

8. Инфразвук. Нормирование и защита

Инфразвук - колебания упругой среды с частотой f  20 Гц.

Распространение инфразвука в воздушной среде происходит на большие расстояния от источника воздействия малого поглощения его энергии. Мощный источник инфразвука: автомобиль, мчащийся со скоростью 100 км/час.

Характеристики - те же, что и ультразвук.

Источники: 1) (механическое происхождение) вентиляторы, поршневые компрессоры, машины и механизмы, работающие с числом оборотов рабочих циклов менее 20 в секунду; 2) движение больших потоков газов или жидкостей (аэродинамическое происхождение).  Действие на человека: ощущение вращения, раскачивание, непроизвольный поворот глазных яблок, чувство тревоги, страха (вплоть до паники), боль в ушах, нарушение чувства равновесия. Причина: внутренние органы человека имеют собственные частоты 68 Гц. Совпадение этих частот с частотами инфразвука приводит к резонансу. При Lи 150 дБ - влияние на органы пищеварения, функции мозга, ритм сердечных сокращений и дыхания слабость, обмороки, потеря зрения и слуха.

По СН 22-74-80; fср = 2, 4, 8, 16 Гц - в октавных полосах - не более 105 дБ, f = 32 Гц - не более 102 дБ.

Большая длина волны позволяет инфразвуку распространяться на десятки тысяч км. Невозможно остановить инфразвук с помощью строительных сооружений.

Защита: ослабление инфразвука в источнике; устранение причин возникновения; увеличение частот до f  20 Гц; СИЗ; мед. профилактика.

9. Вибрация

Вибрация представляет собой процесс распространения механических колебаний в твердом теле. Ее можно представить как колебательное движение материальной точки или механической системы.

9.1 Виды вибрации и ее источники

Источниками вибрации  являются механизмы, машины, механизированный инструмент. Вибрации могут быть непреднамеренными (например, из-за плохой балансировки и центровки вращающихся частей машин и оборудования, пульсирующего движения жидкости, работы перфоратора и.т.п.), а также специально используемыми в технологических процессах (отбойные молотки, вибропогружатели свай, вибрационное оборудование для производства железобетонных конструкций, оборудование для ускорения химических реакций и.т.п.).

Вибрация – это вредный  производственный фактор, отличающийся большой активностью. Вибрационная патология стоит на втором месте среди профессиональных заболеваний. Классификация вибрации связана с особенностями передачи колебаний человеку. В соответствии с эти вибрация подразделяется на общую (воздействие на все тело человека) и локальную (воздействие на отдельные части тела – руки или ноги).

Общая вибрация подразделяется, в свою очередь,  по месту возникновения на следующие виды:

Категория 1 – транспортная вибрация, воздействующая на оператора на рабочих местах самоходных и прицепных машин и транспортных средств при их движении по местности, в том числе, при строительстве дорог; при этом оператор может в известных пределах регулировать ее величину.

Категория 2транспортно-технологическая вибрация, воздействующая на человека0оператора на рабочих местах машин с ограниченной подвижностью при перемещении их по специально подготовленным поверхностям производственных помещений, промышленных площадок и горных выработок; при этом оператор может лишь иногда регулировать воздействие вибрации.

Категория 3а – технологическая вибрация, воздействующая на оператора на рабочих местах стационарных машин или передающаяся на рабрчие места, не имеющие источников вибрации.

Категория 3б – вибрация на рабочих местах работников умственного труда и персонала, не занимающегося физическим трудом. К ней относится, в частности, вибрация, воздействующая на человека на рабочих местах на промышленных кранах, у станков металло- и деревообрабатывающих, кузнечно-прессового оборудования, литейных машин и т.п.

Локальная вибрация классифицируется по источнику возникновения и подразделяется на:

- передающуюся от ручных машин (с двигателями), органов ручного управления машин и оборудования;

- передающуюся от ручных инструментов (без двигателей0 и обрабатываемых деталей.

Эту классификацию следует иметь в виду при гигиенической оценке локальной вибрации, так как в первом случае санитарно-гигиенические требования и правила включаются в техническую документацию на машины и оборудование, а во втором –  в документацию на технологию проведения работ.

Вибрация рабочих мест операторов носит преимущественно низкочастотный характер с высокими уровнями в октавах 1...8 Гц и зависит от технологической операции, скорости передвижения, типа сидения, виброзащиты, степени изношенности машины, профиля дорог и т.п. Спектр вибрации в этих случая – широкополосной (максимум энергии при этом лежит в полосах 1..2 Гц и 4..8 Гц).

На операторов транспортных средств обычно воздействует переменная по уровням и спектрам вибрация, включающая микро- и макропаузы.

Спектры вибраций рабочих мест технологического оборудования носят низко- и средне-частотный характер с максимумом энергии на частотах 4..16 Гц.

9.2 Характеристики вибрации

Вибрация характеризуется следующими величинами:

  •  частотой  f (Гц)
  •  амплитудой смещения А(t) 
  •  скоростью V(t)  (виброскорость)
  •  ускорением w(t)  (виброускорение)

9.3 Действие вибрации на организм человека

Вибрация опасна как для машинного, так и для человеческого компонента системы «человек  - машина». Воздействуя на машинный компонент вибрация чаще всего снижает производительность технических установок, вызывает знакопеременные, приводящие к усталостному разрушению напряжения в конструкциях, снижает точность считываемых показаний приборов и т.п.

При воздействии вибрации на организм важную роль играют анализаторы центральной нервной системы: вестибулярный, кожный и др.

При длительном воздействии вибрации с частотами f = 250-350 Гц возникает профессиональное заболевание под названием «вибрационная болезнь», сопровождающаяся стойкими патологическими нарушениями в организме (поражение мышц, изменения в костях, суставах, смещение органов в брюшной полости).

При частотах f5 Гц (собственная частота колебаний органов человеческого организма) - возможно повреждение отдельных частей и органов.

Опасными частотами для внутренних органов является диапазон 69 Гц, для рук 3080 Гц.

Активной составляющей воздействия вибрации на организм является ускорение. При работе строительных машин и технологических процессов существуют горизонтальные и вертикальные толчки и тряска, сопровождающиеся возникновением периодических импульсных ускорений. При частоте колебаний от 1 до 10 Гц значения предельных ( по ощущениям) ускорений следующие: 10 мм/с – неощутимые, 40 мм/с – слабоощутимые, 400 мм/с – сильно ощутимые, 1000 мм/с – вредные, 4000 мм/с – непереносимые.

Благодаря наличию мягких тканей, костей, суставов, внутренних органов и особенностей конфигурации, тело человека представляет собой сложную колебательную систему, первичная механическая реакция которой на вибрационное воздействие зависит не только от характеристик интенсивности вибрации, но и от диапазона частот.

Особенно вредны вибрации с вынужденной частотой, совпадающей с собственной частотой колебаний тела человека или его отдельных органов:

для тела человека – 6..9 Гц,

головы – 6 Гц,

желудка – 8 Гц,

другие органы – в пределах 25 Гц,

глазные яблоки – 60..90 Гц (расстройства  зрительных восприятий).

Локальная вибрация приводит к спазму сосудов, начиная с концевых фаланг пальцев до предплечья, плеча, сосудов сердца. Она вызывает также поражение нервов, отложение солей.

9.4 Нормирование вибрации

Для санитарного нормирования и контроля вибраций используются средне-квадратичные значения виброскорости V и виброускорения W , а также их логарифмические уровни в децибелах Lv и Lw (для локальной вибрации - в октавных полосах, для общей в 1/3- октавных). Нормативные значения приведены в ГОСТ 12. 1.012-90.

Общая и локальная вибрация нормируются отдельно.

9.5 Защита от вибрации

Основными методами защиты от вибрации являются:

- воздействие на источник возбуждения (снижение или ликвидация возбуждающих сил)

- отстройка от режима резонанса (подбор массы m и жесткости g колебательной системы)

- вибродемпфирование- увеличение механического импеданса колебательной системы

- динамические гашения колебаний - присоединения к защищаемому объекту системы, реакции которой уменьшают размах вибрации объекта.

- изменение конструктивных параметров.

- активная виброзащита - дополнительный источник вибрации в противофазе.

- виброизоляция - для ослабления вибрации от источника. Установка виброизоляторов - материалов с большим внутренним трением (резина, пробка, войлок, асбест, стальные пружины).


 

А также другие работы, которые могут Вас заинтересовать

55239. Державний бюджет 87 KB
  Державний бюджет — система грошових відносин, яка виникає між державою, з одного боку, і підприємствами, фірмами, організаціями та населенням, з іншого, з метою формування та використання централізованого фонду грошових ресурсів для задоволення суспільних потреб. Іншими словами, це — щорічний баланс надходжень та видатків...
55240. Создание и настройка одноранговой компьютерной сети состоящей из 7 компьютеров на основе коаксиального кабеля использующей топологию “общая шина” и технологию передачи данных Ethernet 249.42 KB
  Компьютерная сеть – это технология, которая подразумевает под собой соединение двух или более персональных компьютеров. Она позволяет путем использования соединительных проводов и сетевого оборудования, передавать данные, документы, сообщения и другую информацию, совместно использовать программное обеспечение, установленное на одном из ПК, а также дорогостоящую технику.
55242. Економічні методи аналізу розміщення продуктивних сил 25.58 KB
  Розробляють цільові комплексні програми, у тому числі територіальні. Проекти будівництва підприємств, схеми та проекти районних планів розробляють на проектній стадії обгрунтування розміщення виробництва і його територіального розвитку.
55243. Турнір правознавців 82.5 KB
  Мета: виховувати у школярів інтерес до правових знань популяризувати правові закони розвивати пізнавальний інтерес до предмета з’ясувати як учні знають основні поняття з правознавства навчити дітей користуватися своїми правами в різних ситуаціях виховувати почуття відповідальності за свої вчинки...
55244. Сценарий «Праздник бабушек» 34.5 KB
  Ведущий: Наш праздник мы сегодня посвящаем самым Ученик: любимым Ученик: добрым Ученик: ласковым Ученик: терпеливым Ученик: мудрым Ученик: красивым Ученик: умелым Ученик: милым Ученик: обаятельным Ученик: и очень привлекательным Все вместе: Нашим бабушкам...
55245. В некотором царстве, в музыкальном государстве. Инсценированный праздник 48 KB
  Праздник является итогом Недели музыки. Действующие лица: Учитель Скрипичный ключ Ведущая нотки Королева музыки Учитель. Встречайте королеву музыки.Чайковского входит королева музыки.
55246. Неразлучные друзья – взрослые и дети 51.5 KB
  По ступенькам мы идём Мой город. У каждого человека должен быть свой дом своя семья. А что такое семья Как появилось слово семья Учитель. Все: Так на земле появилась семья Учитель.
55247. ПРАЗДНИК «ПОСВЯЩЕНИЕ В ЧИТАТЕЛИ» 79 KB
  Ты из какой сказки сбежала Баба-Яга: А почему вы решили что я сбежала Мне Кащей Бессмертный на ушко шепнул что сегодня у ребятишек здесь праздник. Королева: Ну раз ты уж здесь Баба-Яга помоги нам праздник интересно провести.