71206

Гармонический анализ сигналов

Лабораторная работа

Коммуникация, связь, радиоэлектроника и цифровые приборы

Цель: Приобрести навыки проведения преобразования Фурье расчета характеристик спектра очистки сигнала от шумов в частотной области. Задачи: Прямое и обратное преобразование Фурье быстрое преобразование Фурье. Краткие теоретические сведения Дискретное преобразование Фурье...

Русский

2014-11-03

68.5 KB

7 чел.

3 Лабораторная работа №3. Гармонический анализ сигналов

Цель: Приобрести навыки проведения преобразования Фурье, расчета характеристик спектра, очистки сигнала от шумов в частотной области.

Задачи:

  1.  Прямое и обратное преобразование Фурье, быстрое преобразование Фурье.
  2.  Расчет модуля спектра и аргумента спектра.
  3.  Сглаживание спектра.

Порядок выполнения работы

  1.  Прочитать теоретические предпосылки.
  2.  Выполнить практические задания.
  3.  Сделать выводы.

Краткие теоретические сведения

Дискретное преобразование Фурье

При дискретном представлении сигналов аргумент tk обычно проставляется номерами отсчетов k (по умолчанию Dt = 1, k = 0,1,…N-1), а преобразования Фурье выполняются по аргументу n (номер шага по частоте) на главных периодах. При значениях N, кратных 2:

Sn = sk exp(-j2pkn/N),     n = -N/2,…,0,…,N/2.                 (1)

sk = (1/N)Sn exp(j2pkn/N),    k = 0,1,…,N-1.                  (2)

Главный период спектра в (1) для циклических частот от -0.5 до 0.5, для угловых частот от -p до p. При нечетном значении N границы главного периода по частоте (значения ±fN) находятся на половину шага по частоте за отсчетами ±(N/2) и, соответственно, верхний предел суммирования в (2) устанавливается равным N/2.

Преобразования (1-2) называют дискретными преобразованиями Фурье (ДПФ). Для ДПФ, в принципе, справедливы все свойства интегральных преобразований Фурье, однако при этом следует учитывать периодичность дискретных функций и спектров.

Алгоритм быстрого преобразования Фурье (БПФ) - это оптимизированный по скорости способ вычисления ДПФ. Основная идея заключается в двух пунктах.

Необходимо разделить сумму (1) из N слагаемых на две суммы по N/2 слагаемых, и вычислить их по отдельности. Для вычисления каждой из подсумм, надо их тоже разделить на две и т.д.

Необходимо повторно использовать уже вычисленные слагаемые.

Применяют либо "прореживание по времени" (когда в первую сумму попадают слагаемые с четными номерами, а во вторую - с нечетными), либо "прореживание по частоте" (когда в первую сумму попадают первые N/2 слагаемых, а во вторую - остальные). Оба варианта равноценны. В силу специфики алгоритма приходится применять только N, являющиеся степенями 2 [3]. Случай прореживания по времени.

В основе алгоритма БПФ лежат следующие формулы:

x[even]n = x2n,

x[odd]n = x2n+1,     

n = 0, 1,..., N/2-1

   

k=0,1,…,N/2-1

X{1}0=x0

Стандартные средства дискретных преобразований Фурье в системе Mathcad

Mathcad содержит функции для выполнения быстрого дискретного преобразования Фурье (БПФ) и его обращения в вещественной и  комплексной области. В Mathcad имеется также одномерное дискретное волновое преобразование и его обращение. Все эти функции имеют векторные аргументы.

В Mathcad входят два типа функций для дискретного преобразования Фурье: fft/ifft и cfft/icfft .

fft (v)

Возвращает дискретное преобразование Фурье 2m-мерного вещественнозначного вектора. Аргумент можно интерпретировать как результат измерений через равные промежутки времени некоторого сигнала.

Вектор v должен иметь 2m элементов. Результат — комплекснозначный вектор размерности 1+2m-1.

ifft (v)

Возвращает обратное дискретное преобразование Фурье; результат — вещественнозначный.

Вектор v должен иметь 1+ 2m элементов, где m — целое. Комплексное преобразование Фурье требует следующих функций:

cfft (A)

Возвращает дискретное преобразование Фурье комплекснозначных вектора или матрицы. Возвращаемый массив имеет тот же самый размер, что и массив, используемый как аргумент.

icfft (A)

Возвращается обращение дискретного преобразования Фурье вектора или матрицы данных. Функция icfft — обратная к функции cfft. Подобно cfft, эта функция возвращает массив того же самого размера, что и аргумент.

Задания

  1.  Получить дискретный сигнал из аналогового (см. лаб.раб 1,2) согласно варианту (таблица 1).
  2.  Добавьте шум в полученный сигнал, используя датчик случайных чисел (отсчёты с равномерным распределением). Построить графики.
  3.  Для полученного зашумлённого сигнала выполните (преобразование взять согласно варианту (таблица 1)):

a) написать программы на языке высокого уровня реализующие быстрое преобразование Фурье и дискретное преобразование Фурье.

b) Построить графики модуля спектра и аргумента спектра.

  1.  После прямого преобразования произвести фильтрацию спектра.
  2.  Реализовать обратное преобразование Фурье.
  3.  Проверить работу программы с помощью системы Mathcad (файл “furtr-преобразование Фурье.mcd”)

Таблица1 – Варианты сигналов

Вариант

Сигнал

и преобразование

Вариант

Сигнал

и преобразование

  1.  

  1.  

s(t) =Akcos(2pfkt+jk)

  1.  

s(t) = Asin (wоt+)

  1.  

s(t) = exp(-at) - exp(-bt)

  1.  

s(t) = Acos(wоt+j)

  1.  

s(t) = u(t) cos(2pfot+jo)

  1.  

s(t) =An sin (2pfnt+jn)

  1.  

s(t)=2A/T(t-kT),

(k-1/2)T<t<=(k+1/2)T

  1.  

s(t)=Asin(t/T)/(t/T)

  1.  

s(t)=A(1-4|t-kT|T),

(k-1/2)T<=t<(k+1/2)T

Список использованной литературы

1 Кирьянов, Д. В.  Самоучитель Mathcad И. - СПб.: БХВ-Петербург, 2003. - 560 с: ил. ISBN 5-94157-348.0 c. 452-456

2 Справка системы Mathcad

3 Сергиенко, А.Б. Цифровая обработка сигналов/Питер.-2003, 608 с.

4 http://psi-logic.narod.ru/fft/fft2.htm Быстрое преобразование Фурье. Теория, программа, разъяснение


PAGE  

PAGE  1


 

А также другие работы, которые могут Вас заинтересовать

76714. Здоровье – понятие и его показатели 35.92 KB
  В научной литературе одновременно используют не только разные определения, но и различные подходы к их формулировке. Больше всего определений, рассматривающих здоровье человека как какой-то функциональный оптимум, как гармонию всех частей организма.
76715. Физическая культура и спорт как социальные феномены общества 111.05 KB
  Поскольку молодое поколение у нас занято в профессионально-образовательной сфере, его самостоятельность следует понимать особым образом, а именно как самостоятельность действий и самостоятельность мышления, тесно между собой связанные.
76717. Антивирусы 31.64 KB
  Антивирусное ПО, пришлось ждать не долго, оно появилось сразу после появления первых вредоносных программ. В нынешний момент над разработкой антивирусных программ трудятся целые корпорации во главе с тысячами людей...
76718. «Августовский путч» и его влияние на развал СССР 99.5 KB
  События 19-20 августа 1991 года занимают особое положение в отечественной литературе. С одной стороны, можно констатировать, что тема не обделена вниманием, а с другой - то, что преобладают издания мемуарного и публицистического плана, где, хотя и освещаются многие важнейшие...
76719. Индустриализация СССР: достижения и противоречия 92 KB
  В актуальности выбранной темы нет сомнений, так как в истории появляются все новые и новые материалы. И не все опираются на глубокие знания сложного переплетения исторических событий и фактов. И тема индустриализации обсуждается, многие ее аспекты рассматриваются по-иному.
76720. Прилуки – мій рідний край 32.73 KB
  У 1993 році кількість населення становила 74,1 тис. осіб. В 1999 році населення міста вже становить 70,7 тис. осіб, починаючи з 1993 року, населення Прилук зменшується в результаті механічного і природного руху. Чисельність наявного населення міста станом на 1 жовтня 2005 року становила 61,6 тис. осіб.
76721. Средства массовой информации: информирование и предвыборная агитация (законодательные дозволения и запреты) 61.43 KB
  Цель исследования состоит в том, чтобы на основе имеющихся нормативно-правовых и теоретических источников, проанализировать процесс становления конституционно-правового регулирования предвыборной агитации и ее финансирования, выявить основные тенденции его современного развития...
76722. Развитие лесного дела в период правления Петра І 130.51 KB
  Сведения о лесах встречаются в разных великокняжеских и царских грамотах некоторых других исторических и географических документах. Рыболовство в лесных озерах и реках охота и бортничество привлекало людей именно в леса.