71210

Обработка результатов измерений с многократными наблюдениями

Лабораторная работа

Производство и промышленные технологии

Цель работы: ознакомление с методикой обработки результатов измерений с многократными наблюдениями. Аппаратура: персональный компьютер. Лабораторное задание Ознакомиться с методикой выполнения работы на ЭВМ и ввести выборку наблюдений.

Русский

2014-11-03

145.5 KB

3 чел.

Московский Государственный Институт Электронной Техники

(Национальный Исследовательский Университет)

Лабораторная работа №3.

Обработка результатов измерений

с многократными наблюдениями

Выполнил:

Швец. С.Ю.

                                                                                                                                    Группа: МП-31

Москва 2011

Цель работы: ознакомление с методикой обработки результатов измерений с

многократными наблюдениями.

Аппаратура: персональный компьютер.

Лабораторное задание

1. Ознакомиться с методикой выполнения работы на ЭВМ и ввести выборку наблюдений.

2. Определить оценку математического ожидания и оценку среднего квадратического отклонения для заданной выборки.

3. Проверить выборку на наличие промахов.

4. Проверить по критерию χ2 Пирсона подчиняется ли выборка нормальному закону распределения.

5. Определить и записать результат измерения.

Выполнение работы
Вариант №1

1

14,5287

2

14,35479

3

14,55482

4

14,37756

5

14,58601

6

14,40033

7

14,63139

8

14,42328

9

14,19075

10

14,44639

11

14,25585

12

14,46958

13

14,29164

14

14,49285

15

14,31907

16

14,5165

17

14,34323

18

14,54138

19

14,3662

20

14,56946

21

14,38893

22

14,60575

23

14,41178

24

14,67111

25

14,43482

26

14,23037

27

14,45798

28

14,27536

29

14,48119

30

14,30597

Определение основных характеристик выборки

  •  Mean  14,43077 – математическое ожидание
  •  Std. Deviation 0,124414 – среднее квадратическое отклонение
  •  Confid -95% 14,38431 – доверительный интервал для вероятности -95%
  •  Confid +95% 14,477225 – доверительный интервал для вероятности +95%   
  •  Sum  432,923 – сумма элементов выборки
  •  Minimum            14,19075 – минимальное значение элемента выборки
  •  Maximum            14,67111 – максимальное значение элемента выборки
  •  Variance             0,015479 – дисперсия
  •  Stand Error 0,022715 – среднее квадратическое отклонение мат. ожидания

Проверка наличия промахов в выборке

= 0,124414

3 = 0,373243

M + 3 =14,43077 + 0,373243=14,80401

M - 3 =14,43077 - 0,373243=14,05752

Minimum > M - 3 (14,19075>14,05752)

Maximum < M + 3 (14,67111<14,80401)

Полученные значения не выходят за границы интервала . Заключаем, что выборка не содержит промахов.

Проверка гипотезы о нормальности распределения

Для проверки гипотезы предпочтительным является критерий 2 Пирсона.

Критерий согласия 2 Пирсона основан на сравнении двух гистограмм: практической и теоретической.

Определим приближённое количество интервалов гистограммы как L=n^(1/2), L=5.

Левую границу зададим как M - 3 =14,43077 - 0,373243=14,05752 (определена по методу «трех сигм»).

Ширину интервала установим из расчета ширины гистограммы равной 6: 6/5 = 0,149297202.

Частотная таблица

Continue

Count

Percent

Normal Expected

VAR 1

14,1908<=x<14,2907

4

13,33333

3,100563

0,538920

14,2907<=x<14,3907

8

26,66667

7,30957

0,040537

14,3907<=x<14,4907

8

26,66667

9,338379

0,076690

14,4908<=x<14,5907

7

23,33333

6,468595

0,050852

14,5907<=x<14,6907

3

10

2,427527

0,198791

Критерий 2 производит сравнение гистограмм опосредованно через сравнение практического Nj и теоретического Nj количеств попаданий результатов наблюдений в одноименные интервалы гистограмм.

VAR4=(Norm.Exp. – Count)^2/ Norm.Exp.

Теоретическое значение 2 было рассчитано с помощью прикладной программы Statistica, причем  , где q – уровень значимости, k – число степеней свободы.

Уровень значимости – это вероятность отвергнуть правильную гипотезу при условии принятия решения отвергнуть проверяемую гипотезу. Проверку гипотезы следует проводить с уровнем значимости q от 10% до 2%.

Число степеней свободы k = L – 3 = 5 – 3 = 2.

q = 3%          p = 0,97            = 7,013116

Для обоих уровней значимости значение

Таким образом, у нас нет оснований опровергнуть гипотезу о том, что результаты наблюдений принадлежат нормальному закону распределения.

Запись результатов

Результат измерения записывается в виде, где A – мат. ожидание,  - доверительные границы интервала случайной составляющей погрешности результата измерения.

, где  – коэффициент Стьюдента, рассчитанный при помощи калькулятора вероятностей.

Приняв доверительную вероятность 95%, получаем t=2,042272

 

Сравним полученные значения доверительного интервала с практическими:

Confid -95%  =14,38438

Confid +95% =14,47716

Значения примерно равны.

Определим количество значащих цифр, заслуживающих доверие:

14,43077=

Запись результата измерений в соответствии с МИ 1317-86:

14,430,05                                                       

доверительная вероятность =0,93,

количество испытаний N=30.

Вывод:

В ходе обработки выборки установлено, что в ней не содержится промахов.

Согласно критерию Пирсона, на заданном уровне значимости 3%, данные не противоречат проверяемой гипотезе о том, что результаты наблюдений принадлежат нормальному закону распределения.

По гистограмме видно, что большинство значений случайной величины сконцентрированы вокруг математического ожидания. Случайная погрешность значения результата измерений определена нами в виде доверительного интервала, в котором с заданной доверительной вероятностью находится истинное значение измеряемой величины.

Определили количество значащих цифр, заслуживающих доверие (в нашем случае 3).

Записали результат измерений в соответствии с МИ 1317-86.

  1.  В каких случаях имеет место гауссовский закон распределения?

в том случае, если случайная погрешность является результатом совме-

стного действия нескольких независимых случайных составляющих, каждая из кото-

рых вносит малую долю в общую погрешность, то, по какому бы закону ни были рас-

пределены  эти  составляющие,  закон  распределения  результата  их  суммарного

действия стремится к гауссовскому.

2. Какое значение измеряемой величины можно выбрать в качестве базового зна-

чения?

 В качестве значения результата измерений принимается оценка математического

ожидания результатов наблюдений – их среднее арифметическое.

  1.  В чем заключается правило “трех сигм”?

Если результаты наблюдений можно считать принадлежащими нормальному за-

кону  распределения,  то  для  обнаружения  промахов  в  выборке  используют  правило

«трех сигм», основанное на условном предположении, что все наблюдения выборки

укладываются  в  интервал  M~[x]± 3σ~ .  Результаты  наблюдений,  которые  выходят  за

пределы интервала M~[x]± 3σ~ , считают промахами и из выборки исключают.

  1.  Определить область применения критерия согласия Пирсона?

При этом должны соблюдаться условия: M[x]=M~[x], σ =σ~ , nT=n, ∆xiT = ∆xi

наблюдения действительно распределены по нормальному закону

  1.  Что означает уровень значимости в критерии Пирсона?

уровень значимости статистического теста – это допустимая для данной задачи вероятность ошибки первого рода, то есть вероятность отклонить гипотезу, когда на самом деле она верна

  1.  Что означает число степеней свободы в критерии Пирсона?

Число степеней свободы df определяется как число групп в ряду распределения минус число связей

7. Что такое σ~X = σ~[A]?

8. Что означает доверительный интервал?

  Это какбээээ интервал Теор количеств

      Nj попаданий определяемых через доверительную вероятность Pj

9. Как определить количество значащих цифр, заслуживающих доверия в резуль-

тате измерения?


 

А также другие работы, которые могут Вас заинтересовать

39321. Цифровые системы передачи. Расчет помехозащищенности цифровой линии передачи 346.5 KB
  Целью данной курсовой работы является формирование начальных умений и навыков самостоятельного проектирования междугородной цифровой линии передачи. В ней рассмотрен основной круг вопросов, решаемых в процессе проектирования...
39322. Формирование начальных умений и навыков самостоятельного проектирования междугородной циф 325 KB
  2 Расчёт длин регенерационных участков Размещение необслуживаемых регенерационных пунктов НРП вдоль кабельной линии передачи осуществляется в соответствии с номинальной длиной регенерационного участка РУ для проектируемой ЦСП. При необходимости допускается проектирование укороченных относительно номинального значения РУ которые следует располагать прилегающими в ОП или ПВ так как блоки линейных регенераторов в НРП не содержат искусственных линий ИЛ. Количество НРП на секциях ОП1 ПВ и ОП2 ПВ определяется из выражений: N1 = n1 1;...
39323. Проектирование цифровой линии передачи 231.5 KB
  В состав аппаратуры входят: оборудование вторичного временного группообразования ВВГ конечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а также комплект контрольноизмерительных приборов КИП. Сформированный в оборудовании ВВГ цифровой сигнал в коде МЧПИ или ЧПИ HDB3 или AMI поступает в оконечное оборудование линейного тракта которое осуществляет согласование выхода оборудование ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии оборудования линейного тракта...
39324. Особенности построения цифровых систем передачи 506.5 KB
  В состав аппаратуры ИКМ120у входят: оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП а так же комплект контрольноизмерительных приборов ИКП. Сформированный в оборудовании ВВГ цифровой сигнал в коде МЧНИ или ЧПИ HDB3 или AMI поступает в оконечное оборудование линейного тракта которое осуществляет согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроля и сигнализацию о состоянии оборудования линейного...
39325. ПОЛЕССКИЙ ГОСУДАРСТВЕННЫЙ РАДИАЦИОННО-ЭКОЛОГИЧЕСКИЙ ЗАПОВЕДНИК 48.5 KB
  На прилегающей к Чернобыльской АЭС территории трех наиболее пострадавших районов Брагинского Наровлянского и Хойникского с сентября 1988 года начал функционировать Полесский государственный экологический заповедник переименованный через год в Полесский государственный радиационноэкологический заповедник ПГРЭЗ. На территории заповедника находятся 96 бывших населенных пунктов в которых в доаварийный период проживало 22 тысячи человек. Изза загрязнения долгоживущими трансурановыми радионуклидами большая часть территории Полесского ГРЭЗ не...
39326. ПАМЯТНИКИ ПРИРОДЫ 41 KB
  Старинные парки охраняются как памятники садовопаркового искусства и имеют культурную историческую эстетическую дендрологическую ценность. Сегодня эти парки привлекают людей красотой свежестью воздуха тишиной. стали создаваться парки регулярного стиля строгой геометрической планировки.
39327. Token ring и FDDI 19.38 KB
  Поэтому при образовании общего кольца из двух колец передатчики станций попрежнему остаются подключенными к приемникам соседних станций что позволяет правильно передавать и принимать информацию соседними станциями. В FDDI достигается битовая скорость 100 Мб с Процедура инициализации FDDI несколько отличается от инициализации Token Ring: Для выполнения процедуры инициализации каждая станция сети должна знать о своих требованиях к максимальному времени оборота токена по кольцу. Параметр TTRT отражает степень потребности станции в пропускной...
39328. Проектирование цифровой системы передачи 177.64 KB
  В состав аппаратуры ИКМ120у входят: оборудование вторичного временного группообразования ВВГ оконечное оборудование линейного тракта ОЛТ необслуживаемые регенерационные пункты НРП обслуживаемые регенерационные пункты ОРП. Сформированный в оборудовании ВВГ цифровой сигнал в коде МЧПИ или ЧПИ HDB3 или AMI поступает в ОЛТ которое осуществляет согласование выхода оборудования ВВГ с линейным трактом дистанционное питание НРП телеконтроль и сигнализацию о состоянии оборудования линейного тракта служебную связь между оконечным...
39329. Проблемы безопасности в беспроводных сетях 38.86 KB
  11b g активно используется на бытовом уровне публичные беспроводные сети функционируют во множестве мест начиная от ресторанов и заканчивая залами ожидания аэропортов и гостиницами. В чем состоит отличие проводной сети от беспроводной В общем случае проводная сеть при условии идеальной и бесспорной порядочности ее пользователей может быть атакована лишь из Интернета если подключена к Сети. А это уже немаловажно подобные действия способны не только принести удовлетворение от созерцания беспроводной сети но и найти пути чтобы в нее...