7128

Параметры сигнала

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция №1 Тема: Параметры сигнала Сигналами называются физические процессы, параметры которых содержат информацию. При этом носителем информации является изменяющиеся во времени ток или напряжение. По своей природе все сигналы являются аналого...

Русский

2013-01-16

451.5 KB

41 чел.

Лекция №1

Тема: Параметры сигнала

Сигналами называются физические процессы, параметры которых содержат информацию.  При этом носителем информации является изменяющиеся во времени ток или напряжение. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного или переменного тока, цифровой или импульсный. Тем не менее, принято выделять аналоговые и цифровые сигналы.

Под аналоговым сигналом понимается сигнал непрерывной формы, изменяющий амплитуду, форму, фазу во времени.

Рис. 1.1 Аналоговый сигнал

С аналоговыми сигналами работает вычислительная техника (или аналоговая вычислительная  машина). Эта машина в реальном масштабе времени решает обычные системы дифферинциальных уравнений, включающие интегралы, дифференциалы, задержки.

В основу этих машин заложены операционные усилители (ОУ), работающие на напряжении  разной полярности.

                      или =

     

                            Рис.1.2

Кроме того,  используются различные цепи задержки в виде конденсатора (сопротивления) (рис.1.3), которые позволяют дифференцировать или интегрировать сигналы.

  

        Рис.1.3                   

                                                                                                                                                                

Операционный усилитель обычно выполняет функцию компаратора (элемента сравнения), которая является электронной схемой, принимающей на свои входы два аналоговых сигнала и выдающей лог. 0 или лог.1, в зависимости от того, какой из сигналов больше. На рис. 1.4 показан символ компаратора на схеме.

          Рис.1.4

Работа его заключается в следующем: если на вход U1 подавать «+» напряжение, а на другой  вход U2  «-»напряжение и с выхода снимать выходной сигнал, то Uвых=U1+U2   (рис.1.5).

                  

 Uвых=U1+U2

 

                           Рис.1.5

При равенстве сигнал на входе (U1=U2)  на выходе операционного усилителя будет ноль (Uвых =0).

Если U1>U2 , то на выходе сигнал положительный (Uвых >0), а если U2> U1 то на выходе сигнал отрицательный (Uвых <0).

Отсюда видно, что операционный усилитель (ОУ) может выполнять роль определителя, усилителя, также выполнять функции сравнения, проверки на больше/меньше, усиления сигналов и с использованием цепей задержки осуществлять дифференцирование и интегрирование входных переменных.

     Рис.1.6

Подавая на вход «+» или «–» несколько сигналов через  сопротивление (R1,R2,R3…), операционный  усилитель может осуществлять операцию суммирования сигналов, выполнять различные логические функции и при использовании нескольких операционных усилителей решать дифференциальные уравнения n-ого порядка.

Таким образом, схемно, при помощи аналоговых ОУ можно решать в реальном масштабе времени различные задачи систем уравнений, включая,  и задачи линейного программирования.

Цифровые сигналы

Цифровые сигналы работают с сигналами одинаковой амплитуды, разной длительности, разной длительности, частоты и скважности. Амплитуда обычно постоянна и равна напряжению питания. Некоторые сигналы бывают с положительным напряжением (обычно это схемы  с транзисторами p-n-p типов) и с отрицательным напряжением.

                                                                                              

                                                                       

          Рис.1.7                                                                       Рис.1.8

На рис. 1.9 показан цифровой сигнал, работающий на положительном напряжении

          Рис.1.9

    Цифровые сигналы характеризуются частотой  f=(=Гц) и

периодом T=

При частоте 3Ггц период будет  T ≈ 3∙10-9Гц.

K=103                  m=10-3

M=106                 mк=10-6

Г=109                   нс=10-9

Т≈0,33∙10-9с=0,33 нс

Отношение длительности импульса к периоду следования импульсов  называется скважностью

C=∙100%

Скважность измеряется в процентах, чем  меньше эта величина, тем короче импульсы логической единицы. Обычно вычислительная цифровая техника работает с сигналами, скважность которых менее 50%. Такие сигналы называются импульсными с очень короткой длительностью.

При скважности более 50% сигналы называются потенциальными. Они так же используются для установки устройств в исходное состояние или других целей. На рис. 1.10 показан сигнал идеальной формы, который на практике нельзя  получить. Фактически каждый импульс имеет трапецеидальную форму.

                            рис 1.10 Форма цифрового сигнала

τ01- время переключения с 0 в 1

τ10- время переключения с 1 в 0

Под логической 1 понимается напряжение питания.

Цифровой сигнал имеет передний фронт, длительность τ (время)  которого определяется задержкой и обозначается 01- означает переключение сигнала из состояния «0» в состояние «1». Задний фронт характеризуется временем 10 , т.е. временем переключения с «1» в «0». Эти параметры определяют задержку сигнала при прохождении через какой-либо элемент. Величины этих параметров разные, задаются техническими условиями элемента. Если сигнал периодический, то имеет период Т, при этом он имеет и частоту.

Обычно быстродействие определяется как среднее время задержки сигнала = (01+10)/2. Для биполярных транзисторов (p-n-p или  n-p- n типов) эта величина составляет примерно 5-10нс.

Важным параметром является состояние логического  нуля.

Транзисторно – транзисторная логика (ТТЛ)  

Un= +5 B

“1”=(2,4÷5.2B)

“0”=(0÷ +0,4В)

(0.4÷2.4В) – сигнал не определен.

Зона логической единицы чуть больше.

Из этого графика (рис. 1.10)  видно, что:

1) для получения качественных преобразований сигнал должен быстро проходить неопределенное состояние;

2) при прохождении неопределенного состояния нельзя производить вычисления, т.к. можно получить неверный результат, поэтому для получения точных вычислений сигналы синхронизируют, избегая моментов переключения элементов.

Тема: Элементы цифровой вычислительной техники

Цифровая вычислительная техника работает с сигналами двоичной формы.       Они бывают равные 1 или 0.

1) логическая единица (Т). Под логической 1 понимается напряжение питания.

Un -“1” -T- «да»

2)

Если нет сигнала - это логический ноль (F).

0B -“0” -F-«нет»

 Физически 0 представляет собой корпус схемы или земля.

Цифровые элементы обычно реализуют элементарные булевые функции.

Символьное обозначение:     

&-конъюнкция X1X2

v-дизъюнкция X1+X2         

¬-инверсия (отрицание)         

↓-стрелка Пирса               - элемент ИЛИ-НЕ

/ -Штрих Шеффера          - элемент И-НЕ

-сложения по mod 2    

∞-эквивалентность          х1∞х2

→-импликация                 х1→х2

0 & 1=0

1v1=1

=1

0↓1=0

1/0=1

11=0         10=1

1 ~1=1

1→0=0

0→1=1

ОУ

выхх

-U

  +U

+   1

   -   2


 

А также другие работы, которые могут Вас заинтересовать

15807. Статистическая таблица. Ее элементы. Виды таблиц 11.94 KB
  Статистическая таблица. Ее элементы. Виды таблиц. Результаты сводки и группировки данных представляют в виде статистических таблиц. Статистическая таблица содержит сводную числовую характеристику исследуемой совокупности по одному или нескольким существенным приз
15808. Проектна технологія як засіб формування інтересу до пізнання молодших школярів 66.5 KB
  Анотація Одним із провідних орієнтирів української освіти і виховання є врахування здібностей нахилів та інтересів школярів у процесі навчальної діяльності що визначено Законом України €œПро освіту€. Завдання створення сприятливих умов для творчого характеру навч
15809. Проблема інтересу до навчання в педагогіці епохи Гуманізму 64.5 KB
  Аспірант Баранова Анастасія Миколаївна Проблема інтересу до навчання в педагогіці епохи Гуманізму Проблема інтересу до навчання в історії педагогічної думки і практиці навчання зявлялась поступово та характеризувалася увагою до певних її аспектів що зумов
15810. Проблема інтересу до навчання в історії російської педагогічної думки 73.5 KB
  УДК 372.4 Аспірант Баранова Анастасія Миколаївна Луганський національний університет імені Тараса Шевченка Проблема інтересу до навчання в історії російської дореволюційної педагогічної думки Проблема інтересу до навчання в історії російської педаго
15811. Проблема інтересу до навчання у педагогічній спадщині Г. Сковороди та О. Духновича 43.5 KB
  Проблемі формування в учнів інтересу до навчання в Україні протягом різних історичних епох приділялося велике значення. Зміст, особливості організації та проведення пізнавального процесу завжди обумовлювались розвитком духовної культури, суспільними взаємовідносинами та прогресивними ідеями
15812. Деловые игры как средство формирования интереса к обучению у студентов ВНЗ 75.5 KB
  Деловые игры как средство формирования интереса к обучению у студентов ВУЗа Баранова А. Н. Значимость образования и его роль в обществе считается приоритетом всестороннего развития современного общества. Образовательные системы в любой стране мира должны способст
15813. ОПРЕДЕЛЕНИЕ ОПТИЧЕСКИХ КОНСТАНТ ПЛЕНОК НА ПОДЛОЖКАХ ИЗ КРЕМНИЯ 1.22 MB
  Среди фундаментальных характеристик вещества одно из основных мест принадлежит оптическим константам ОК показателю преломления n и показателю поглощения. Показатели преломления и поглощения...
15814. ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ ПЛЕНОК ФТОРИДОВ И БИФТОРИДОВ 655.5 KB
  ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ ПЛЕНОК ФТОРИДОВ И БИФТОРИДОВ Со времен своего возникновения технология изготовления многослойных интерференционных покрытий ИП занимающая целую отрасль в оптическом приборостроении претерпела значительные изменения. Современные средства...
15815. МЕТОДЫ АНАЛИЗА УСТОЙЧИВОСТИ ОПТИЧЕСКИХ ИНТЕРФЕРЕНЦИОННЫХ ПОКРЫТИЙ 3.56 MB
  МЕТОДЫ АНАЛИЗА УСТОЙЧИВОСТИ ОПТИЧЕСКИХ ИНТЕРФЕРЕНЦИОННЫХ ПОКРЫТИЙ При решении задач проектирования и изготовления тонкопленочных оптических интерференционных покрытий особое внимание уделяется исследованию воспроизводимости их спектральных характеристик [17]. ...