7128

Параметры сигнала

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Лекция №1 Тема: Параметры сигнала Сигналами называются физические процессы, параметры которых содержат информацию. При этом носителем информации является изменяющиеся во времени ток или напряжение. По своей природе все сигналы являются аналого...

Русский

2013-01-16

451.5 KB

41 чел.

Лекция №1

Тема: Параметры сигнала

Сигналами называются физические процессы, параметры которых содержат информацию.  При этом носителем информации является изменяющиеся во времени ток или напряжение. По своей природе все сигналы являются аналоговыми, будь то сигнал постоянного или переменного тока, цифровой или импульсный. Тем не менее, принято выделять аналоговые и цифровые сигналы.

Под аналоговым сигналом понимается сигнал непрерывной формы, изменяющий амплитуду, форму, фазу во времени.

Рис. 1.1 Аналоговый сигнал

С аналоговыми сигналами работает вычислительная техника (или аналоговая вычислительная  машина). Эта машина в реальном масштабе времени решает обычные системы дифферинциальных уравнений, включающие интегралы, дифференциалы, задержки.

В основу этих машин заложены операционные усилители (ОУ), работающие на напряжении  разной полярности.

                      или =

     

                            Рис.1.2

Кроме того,  используются различные цепи задержки в виде конденсатора (сопротивления) (рис.1.3), которые позволяют дифференцировать или интегрировать сигналы.

  

        Рис.1.3                   

                                                                                                                                                                

Операционный усилитель обычно выполняет функцию компаратора (элемента сравнения), которая является электронной схемой, принимающей на свои входы два аналоговых сигнала и выдающей лог. 0 или лог.1, в зависимости от того, какой из сигналов больше. На рис. 1.4 показан символ компаратора на схеме.

          Рис.1.4

Работа его заключается в следующем: если на вход U1 подавать «+» напряжение, а на другой  вход U2  «-»напряжение и с выхода снимать выходной сигнал, то Uвых=U1+U2   (рис.1.5).

                  

 Uвых=U1+U2

 

                           Рис.1.5

При равенстве сигнал на входе (U1=U2)  на выходе операционного усилителя будет ноль (Uвых =0).

Если U1>U2 , то на выходе сигнал положительный (Uвых >0), а если U2> U1 то на выходе сигнал отрицательный (Uвых <0).

Отсюда видно, что операционный усилитель (ОУ) может выполнять роль определителя, усилителя, также выполнять функции сравнения, проверки на больше/меньше, усиления сигналов и с использованием цепей задержки осуществлять дифференцирование и интегрирование входных переменных.

     Рис.1.6

Подавая на вход «+» или «–» несколько сигналов через  сопротивление (R1,R2,R3…), операционный  усилитель может осуществлять операцию суммирования сигналов, выполнять различные логические функции и при использовании нескольких операционных усилителей решать дифференциальные уравнения n-ого порядка.

Таким образом, схемно, при помощи аналоговых ОУ можно решать в реальном масштабе времени различные задачи систем уравнений, включая,  и задачи линейного программирования.

Цифровые сигналы

Цифровые сигналы работают с сигналами одинаковой амплитуды, разной длительности, разной длительности, частоты и скважности. Амплитуда обычно постоянна и равна напряжению питания. Некоторые сигналы бывают с положительным напряжением (обычно это схемы  с транзисторами p-n-p типов) и с отрицательным напряжением.

                                                                                              

                                                                       

          Рис.1.7                                                                       Рис.1.8

На рис. 1.9 показан цифровой сигнал, работающий на положительном напряжении

          Рис.1.9

    Цифровые сигналы характеризуются частотой  f=(=Гц) и

периодом T=

При частоте 3Ггц период будет  T ≈ 3∙10-9Гц.

K=103                  m=10-3

M=106                 mк=10-6

Г=109                   нс=10-9

Т≈0,33∙10-9с=0,33 нс

Отношение длительности импульса к периоду следования импульсов  называется скважностью

C=∙100%

Скважность измеряется в процентах, чем  меньше эта величина, тем короче импульсы логической единицы. Обычно вычислительная цифровая техника работает с сигналами, скважность которых менее 50%. Такие сигналы называются импульсными с очень короткой длительностью.

При скважности более 50% сигналы называются потенциальными. Они так же используются для установки устройств в исходное состояние или других целей. На рис. 1.10 показан сигнал идеальной формы, который на практике нельзя  получить. Фактически каждый импульс имеет трапецеидальную форму.

                            рис 1.10 Форма цифрового сигнала

τ01- время переключения с 0 в 1

τ10- время переключения с 1 в 0

Под логической 1 понимается напряжение питания.

Цифровой сигнал имеет передний фронт, длительность τ (время)  которого определяется задержкой и обозначается 01- означает переключение сигнала из состояния «0» в состояние «1». Задний фронт характеризуется временем 10 , т.е. временем переключения с «1» в «0». Эти параметры определяют задержку сигнала при прохождении через какой-либо элемент. Величины этих параметров разные, задаются техническими условиями элемента. Если сигнал периодический, то имеет период Т, при этом он имеет и частоту.

Обычно быстродействие определяется как среднее время задержки сигнала = (01+10)/2. Для биполярных транзисторов (p-n-p или  n-p- n типов) эта величина составляет примерно 5-10нс.

Важным параметром является состояние логического  нуля.

Транзисторно – транзисторная логика (ТТЛ)  

Un= +5 B

“1”=(2,4÷5.2B)

“0”=(0÷ +0,4В)

(0.4÷2.4В) – сигнал не определен.

Зона логической единицы чуть больше.

Из этого графика (рис. 1.10)  видно, что:

1) для получения качественных преобразований сигнал должен быстро проходить неопределенное состояние;

2) при прохождении неопределенного состояния нельзя производить вычисления, т.к. можно получить неверный результат, поэтому для получения точных вычислений сигналы синхронизируют, избегая моментов переключения элементов.

Тема: Элементы цифровой вычислительной техники

Цифровая вычислительная техника работает с сигналами двоичной формы.       Они бывают равные 1 или 0.

1) логическая единица (Т). Под логической 1 понимается напряжение питания.

Un -“1” -T- «да»

2)

Если нет сигнала - это логический ноль (F).

0B -“0” -F-«нет»

 Физически 0 представляет собой корпус схемы или земля.

Цифровые элементы обычно реализуют элементарные булевые функции.

Символьное обозначение:     

&-конъюнкция X1X2

v-дизъюнкция X1+X2         

¬-инверсия (отрицание)         

↓-стрелка Пирса               - элемент ИЛИ-НЕ

/ -Штрих Шеффера          - элемент И-НЕ

-сложения по mod 2    

∞-эквивалентность          х1∞х2

→-импликация                 х1→х2

0 & 1=0

1v1=1

=1

0↓1=0

1/0=1

11=0         10=1

1 ~1=1

1→0=0

0→1=1

ОУ

выхх

-U

  +U

+   1

   -   2


 

А также другие работы, которые могут Вас заинтересовать

26470. Фило-онтогенез кожного покрова 20 KB
  Филоонтогенез кожного покрова Филогенез: ланцетник – однослойный цилиндрический эпителий рыбы – появляются производные кожного покрова чешуя амфибии – двуслойный эпителий 2ой слой соединительнотканный в связи с выходом на сушу рептилии – 34слойный эпидермис в соединительной ткани коллагеновые и эластические волокна роговые образования птицы млекопитающие – 5 слоёв эпителия 2слоя в дерме подкожный; роговые образования железы у птиц – перья копчиковая железа онтогенез: У эмбриона кожа состоит из эпителия эктодермального...
26471. Фило-онтогенез скелета 25 KB
  Внутренний – развивался в филогенезе как каркас – опорная конструкция на которой закрепляются мягкие ткани. в промежуточном вве костной ткани кроме коллагеновых волокон и клеток откладываются мин. Пресмыкающиеся и тд – скелет из пластинчатой костной ткани коллагеновые волокна расположены упорядоченно . ткани перепончатого скелета коллагеновые волокна расп.
26472. Анатомическая терминология. Плоскости и направления, принятые в анатомии 28.5 KB
  латеральное направление – наружу медиальное направление – вовнутрь Сегментальная поперечная – вертикальная проходящая поперёк тела и делящая его на переднюю и заднюю половины. краниальное направление – к голове cranium череп каудальное направление – к хвосту cauda – хвост Фронтальная горизонтальная делит тело на верхнюю и нижнюю половины. дорсальное направление – вверх dorsum спина вентральное направление – вниз ventor – живот На голове: дорсальное направление...
26473. Биоморфологические закономерности строения и развития организмов 27 KB
  Биоморфологические закономерности строения и развития организмов Организм – целостная живая система для которого прежде всего характерны целостность и дискретность. Общие принципы строения тела животного: биполярность билатеральность сегментарность закон трубкообразного строения большинство непарных органов расположены вдоль главной оси тела Основные законы биологического развития: Закон исторического филогенетического развития Шмальгаузен: в процессе развития постоянно происходит дифференцировка разделение функций клеток и тканей...
26474. Железы кожного покрова 45 KB
  На коже вымени: между бёдрами – молочное зеркало planum lactiferum или надвыменная область regio supramammaria Под кожей поверхностная фасция вымени беловатая пластинка из плотн. ткани соединительнотканная собственная оболочка долей вымени соединённая прослойками ткани внутри долей вымени – стромой stroma gl. mammaria между правой и левой половинами – подвешивающая связка вымени lig. suspensorium mammarium на месте связки снизу вымени – серединный жёлоб – sulcus intermammarius.
26475. Классификация костей 23.5 KB
  Классификация костей Оs longum длинные дугообразные рёбра трубчатые плечевая бедренная общий план строения: биэпифизарные дистальный эпифиз проксимальный эпифиз между эпифизами – тело кости – диафиз. Зона роста кости в длину – проксимальный и дистальный метафиз – между эпифизом и диафизом. Os longum короткие равны по длине высоте ширине состоят из компактного и губчатого вещества кости запястья и заплюсны основная функция – амортизация Os planum плоские или пластинчатые Имеют обширные...
26476. Кость как орган и её остеогенез 33.5 KB
  соли в кости меняется: Молодость: 1:1 Зрелость: 1:2 Старость: 1:7 кости твёрдые хрупкие С поверхности кость покрыта надкостницей periosteum: Наружный фиброзный слой защитная функция из плотной соединительной ткани содержит много коллагеновых волокон. продольно по отношению к главной оси кости. Костные перегородки остеоны расположены плотно что придаёт кости прочность сравнимую с прочностью гранита. Особо толстый слй компакты там где велики нагрузки кости на излом.
26477. Морфофункциональная характеристика волоса 35.5 KB
  Морфофункциональная характеристика волоса Волосы pili производные эпидермиса тонкие эластичные ороговевающие нити из ороговевшего или ороговевающего эпителия. волосы покрывают почти всё тело Фции: защита терморегуляторная орган осязания Волос состоит из: волосяная нить: стержень – scapus pili видимая часть корень – radix pili находится в толще кожного покрова корень переходит в луковицу волоса. волосяная сумка чехол в сумку открываются протоки сальных желёз Утолщение корня...
26478. Морфофункциональная характеристика кожного покрова 36.5 KB
  3 составляющих: кожа cutis слизистая оболочка tunica mycosa выстилает изнутри органы пищеварения дыхания размножения мочевыделения производные кожного покрова: железы потовые сальные молочные волосы перья чешуя мякиши роговые образования рога копыта когти СUTIS: epidermis располагается с поверхности представлен многослойным плоским ороговевающим эпителием dermis собственно кожа – дерма – соединительная ткань subcutis подкожный слой – соединительная ткань epidermis 2060мкм эктодермальное происхождение...