7136

Логический синтез цифровых устройств

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Курсовая работа Логический синтез цифровых устройств Описание работы проектируемого устройства. Объект представляет собой техническое устройство, в которое поступают различные детали. Имеется 5 датчиков, которые определяют соответствие д...

Русский

2013-01-17

905.5 KB

13 чел.

Курсовая работа

‘Логический синтез цифровых устройств’

Описание работы проектируемого устройства.

Объект представляет собой техническое устройство, в которое поступают различные детали. Имеется 5 датчиков, которые определяют соответствие деталей (“да”-“нет”) некоторым параметрам (размер, форма, цвет, конфигурация и т.п.). В зависимости от комбинации сигналов датчиков f(Х1,Х2,Х3,Х4,Х5) детали сортируются и направляются в разные бункеры и подсчитываются. Рассмотрим работу для одного бункера.

При поступлении детали в позицию сортировки вырабатывается сигнал ГОТОВ который равен “1” все время нахождения детали в этой позиции. Для проектируемой схемы сигнал ГОТОВ и сигналы датчиков Х1, Х2, Х3, Х4, Х5 внешние. По фронту сигнала ГОТОВ запускается одновибратор. Через время задержки t1 (на срабатывание датчиков) второй одновибратор формирует синхроимпульс длительностью t2.

По сигналу “1” на выходе комбинационной схемы и синхроимпульсу детали направляются в соответствующий бункер. Схема счетчика осуществляет подсчет деталей, поступающих в бункер, и при достижении заданного числа N выдает сигнал о заполнении бункера.

Исходные данные:

Логическая функция:

Входные сигналы

№ варианта

i

X5

X4

X3

X2

X1

6

0

0

0

0

0

0

0

1

0

0

0

0

1

0

2

0

0

0

1

0

0

3

0

0

0

1

1

0

4

0

0

1

0

0

0

5

0

0

1

0

1

х

6

0

0

1

1

0

0

7

0

0

1

1

1

х

8

0

1

0

0

0

0

9

0

1

0

0

1

х

10

0

1

0

1

0

0

11

0

1

0

1

1

0

12

0

1

1

0

0

0

13

0

1

1

0

1

1

14

0

1

1

1

0

0

15

0

1

1

1

1

х

16

1

0

0

0

0

0

17

1

0

0

0

1

1

18

1

0

0

1

0

0

19

1

0

0

1

1

0

20

1

0

1

0

0

0

21

1

0

1

0

1

1

22

1

0

1

1

0

0

23

1

0

1

1

1

1

24

1

1

0

0

0

0

25

1

1

0

0

1

х

26

1

1

0

1

0

0

27

1

1

0

1

1

0

28

1

1

1

0

0

1

29

1

1

1

0

1

1

30

1

1

1

1

0

1

31

1

1

1

1

1

1

1. Модуль счета 14, обратное направление счета.

2. Базис логической функции и дешифратора И, ИЛИ, НЕ. Базис счетчика – микросхема К555ТВ9 (2-а JK триггера). Тип индикатора АЛС342А.

3. Параметры одновибратора:

 t1=0.27 c;

 t2=25 мс;

микросхема К1006ВИ1

1.Минимизируем логическую функцию по методу Квайна.

В результате всех склеиваний получаем минимизированную логическую функцию:

2. Спроектируем одновибратор на интегральных таймерах для заданного времени задержки t1 и длительности импульса t2.

Определим параметры элементов R1, R3, С1, С4 , они определяются из условия, что для запуска таймера необходи мотрицательный импульс длительностью 10..15 мкс.

 

Определим емкость конденсатора С1=С4 при t=15 мкс, для этого примем сопртивление резистора R1=R3=1 кОм.

Получили С1=С4=21.64 пФ , принимаем ближайшее стандартное значение С1=С4=20 пФ.

Определим параметры элементов R2, С2 первого таймера для формирования импульса t1=0.27 с  из формулы:  

Зададимся сопротивлением резистора R2=10кОм, получим емкость конденсатора С2=24,576 мкФ, примем ближайщее стандартное значение С2=25мкФ при этом t1=0,275.

Определим параметры элементов R4, С5 второго таймера для формирования импульса t2=25мс из формулы:  

Зададимся сопротивлением резистора R4=22кОм, получим емкость конденсатора С5=1,034 мкФ, примем ближайщее стандартное значение С5=1мкФ при этом t2=24.169.

Принципиальная схема одновибратора:

3. Синтезируем на микросхеме К555ТВ9 счетчик с модулем счета 14 и обратным направлением счета.

Микросхема К555ТВ9 представляет собой два JK-триггера, для счетчика необходимо 4 триггера(2 микросхемы). Составим таблицу состояний и переходов.

i

Текущее (i)

Следующее (i+1)

T4

T3

T2

T1

Q4

Q3

Q2

Q1

Q4

Q3

Q2

Q1

Переход

J4

K4

Переход

J3

K3

Переход

J2

K2

Переход

J1

K1

13

1

1

0

1

1

1

0

0

11

*

0

11

*

0

00

0

*

10

*

1

12

1

1

0

0

1

0

1

1

11

*

0

10

*

1

01

1

*

01

1

*

11

1

0

1

1

1

0

1

0

11

*

0

00

0

*

11

*

0

10

*

1

10

1

0

1

0

1

0

0

1

11

*

0

00

0

*

10

*

1

01

1

*

9

1

0

0

1

1

0

0

0

11

*

0

00

0

*

00

0

*

10

*

1

8

1

0

0

0

0

1

1

1

10

*

1

01

1

*

01

1

*

01

1

*

7

0

1

1

1

0

1

1

0

00

0

*

11

*

0

11

*

0

10

*

1

6

0

1

1

0

0

1

0

1

00

0

*

11

*

0

10

*

1

01

1

*

5

0

1

0

1

0

1

0

0

00

0

*

11

*

0

00

0

*

10

*

1

4

0

1

0

0

0

0

1

1

00

0

*

10

*

1

01

1

*

01

1

*

3

0

0

1

1

0

0

1

0

00

0

*

00

0

*

11

*

0

10

*

1

2

0

0

1

0

0

0

0

1

00

0

*

00

0

*

10

*

1

01

1

*

1

0

0

0

1

0

0

0

0

00

0

*

00

0

*

00

0

*

10

*

1

0

0

0

0

0

1

1

0

1

01

1

*

01

1

*

00

0

*

01

1

*

Схема расположения минтермов:

Составляем карты Карно:

 J1=1      K1=1

В соответствии с полученными уравнениями строим схему счетчика:

4. Разработаем дешифратор для индикации показаний счетчика.

Таблица описывающая логику работы дешифратора.

i

X4

X3

X2

X1

a1

b1

c1

d1

e1

f1

g1

b2,c2

0

0

0

0

0

1

1

1

1

1

1

0

0

1

0

0

0

1

0

1

1

0

0

0

0

0

2

0

0

1

0

1

1

0

1

1

0

1

0

3

0

0

1

1

1

1

1

1

0

0

1

0

4

0

1

0

0

0

1

1

0

0

1

1

0

5

0

1

0

1

1

0

1

1

0

1

1

0

6

0

1

1

0

1

0

1

1

1

1

1

0

7

0

1

1

1

1

1

1

0

0

0

0

0

8

1

0

0

0

1

1

1

1

1

1

1

0

9

1

0

0

1

1

1

1

1

0

1

1

0

10

1

0

1

0

1

1

1

1

1

1

0

1

11

1

0

1

1

0

1

1

0

0

0

0

1

12

1

1

0

0

1

1

0

1

1

0

1

1

13

1

1

0

1

1

1

1

1

0

0

1

1

Составляем карты Карно для каждого выхода.

Схема расположения минтермов:

Полученные минимизированные функции:

С учетом повторений в выходных функциях составляем схему дешифратора.

Схема подключения индикатора:

Определим сопротивление резисторов R7-R14 и ток протекающий через микросхему из условия что для нормальной работы индикатора на его элемент необходимо подать напряжение 3.5В и ток 15..20 мА.

Падение напряжения на ограничительном резисторе равно: Ur=Uи.п-Uинд=5-3.5=1.5 В.

Сопротивление резистора =1.5/0.015=100 Ом

При это ток через микросхему составит(при U0вых=0.3 В) А = 47 мА

Принципиальная схема дешифратора:

Перечень элементов

Обозначение

Наименование

Кол.

Примечание

DD1,DD4,DD11,DD13,DD15

К555ЛИ1

5

DD12,DD14

К555ЛИ3

2

DD2,DD10

К555ЛН1

2

DD3,DD5,DD16-DD21

К531ЛЛ1

8

DD6,DD7

К555ТВ9

2

DD8,DD9

К1006ВИ1

2

HL1,HL2

АЛС342А

2

С1,С4

К10-17-100В-20 пФ ±10%

2

С2

К50-6-16В-25 мкФ ±10%

1

С5

К50-6-16В-1 мкФ ±10%

1

R1,R3,R5

МЛТ-0.25-1 кОм ±5%

3

R2

МЛТ-0.25-10 кОм ±5%

1

R4

МЛТ-0.25-22 кОм ±5%

1

R7-R14

МЛТ-0.25-100 Ом ±5%

8


 

А также другие работы, которые могут Вас заинтересовать

24693. МАКСИМАЛЬНЫЕ ТОКОВЫЕ ЗАЩИТЫ С РЕЛЕ ПРЯМОГО ДЕЙСТВИЯ 557.5 KB
  Выпускаются токовые реле прямого действия мгновенные типа РТМ и с ограниченно зависимой характеристикой РТВ.32 а и б показаны двухфазные схемы МТЗ с реле типа РТВ. Реле РТВ представляет собой электромагнитное реле с втягивающимся якорем рис.
24694. НЕСЕЛЕКТИВНЫЕ ОТСЕЧКИ 45 KB
  Такая отсечка применяется для быстрого отключения КЗ в пределах всей защищаемой ЛЭП. Неселективное действие отсечки при КЗ вне ЛЭП исправляется при помощи АПВ включающего обратно отключившуюся ЛЭП. При этом пускается устройство АПВ которое включает обратно неселективно отключившуюся ЛЭП W1 и восстанавливает питание подстанции В.
24695. УКАЗАТЕЛЬНЫЕ РЕЛЕ 101 KB
  20 показано указательное реле типа РУ21 сигнализирующее действие РЗ на отключение выключателя. При срабатывании РЗ по обмотке реле 3 проходит ток приводящий реле в действие. Ввиду кратковременности прохождения тока в обмотке указательных реле они выполняются так что сигнальный флажок и контакты реле остаются в сработанном состоянии до тех пор пока их не возвратит на место обслуживающий персонал.
24696. НЕОБХОДИМОСТЬ И СПОСОБЫ РЕЗЕРВИРОВАНИЯ 177 KB
  С ними нельзя не считаться поскольку отказ РЗ или выключателя означает неотключение КЗ а следовательно длительное прохождение токов КЗ и снижение напряжения в сети. Наряду с принятием мер по повышению надежности действия РЗ и выключателей особо важное значение приобретает резервирование отключения КЗ в случае отказа выключателя или действующей на него РЗ. Применяются два способа резервирования: дальнее осуществляемое РЗ и выключателями смежных участков установленными на соседних энергообъектах; ближнее осуществляемое РЗ и...
24697. НАЗНАЧЕНИЕ ЗАЩИТЫ ШИН 380.5 KB
  ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА ШИН Дифференциальная РЗ шин ДЗШ рис. Для питания ДЗШ на всех присоединениях устанавливаются ТТ с одинаковым коэффициентом трансформации К независимо от мощности присоединения. Тогда при внешних КЗ X 1пр = 0 и реле не будет действовать а при КЗ в зоне на шинах равна сумме токов КЗ притекающих к месту повреждения и ДЗШ работает. Вторичные токи направлены в обмотке реле одинаково поэтому ток в реле равен их сумме: Так както Выражение показывает что При КЗ на шинах ДЗШ реагирует на...
24698. 34 ЗАЩИТА АД 110 KB
  Наиболее просто токовая отсечка выполняется с реле прямого действия встроенными в привод выключателя. С реле косвенного действия отсечка выполняется с независимыми токовыми реле по схемам на рис.7; Iпуск пусковой ток электродвигателя; k0TC коэффициент отстройки Токовую РЗ электродвигателей мощностью до 2000 кВт следует выполнять как правило по наиболее простой и дешевой однорелейной схеме рис. На электродвигателях мощностью 20005000 кВт токовая отсечка выполняется двухрелейной.
24699. Основные особенности выполнения РЗ на блоках 88 KB
  2 отсутствие электрической связи между генератором и сетью имеющее место в блочных схемах облегчает решение вопросов селективности РЗ генератора от замыканий на землю вследствие высокой стоимости мощных генераторов и трансформаторов повышенные требования в части чувствительности быстродействия и надежности на блоках без поперечных связей необходимость действия на останов блока в целом; На блоках малой мощности до 30 МВт включительно в качестве РЗ от внешних КЗ применяется МТЗ с комбинированным пуском по напряжению. На блоках...
24700. ЗАЩИТА РОТОРА от замыкания на корпус 63 KB
  Для периодического контроля за состоянием изоляции цепей возбуждения используется вольтметр один зажим которого соединен с землей а второй поочередно подключается к полюсам ротора. Если изоляция ротора достаточно высока замеры вольтметра в обоих случаях будут близки к нулю. Второй конец обмотки токового реле заземляется через специальную щетку имеющую электрический контакт с валом ротора.
24701. Защита ротора от перегрузки 38 KB
  Для предотвращения повреждения ротора при перегрузке предусматривается специальная РЗ а также выполняется ограничение длительности форсировки возбуждения. Наиболее полноценную РЗ ротора от перегрузки можно осуществить с помощью реле имеющего характеристику соответствующую перегрузочной характеристике ротора. Выдержка времени первой ступени при одних и тех же значениях тока ротора примерно на 20 меньше выдержки времени второй ступени.