71439

СВЯЗЬ КООРДИНАТ ТОЧЕК МЕСТНОСТИ И ИХ ИЗОБРАЖЕНИЙ НА СКАНЕРНЫХ СНИМКАХ

Доклад

География, геология и геодезия

RSi – вектор, определяющий положение центра проекции i-й строки в системе координат объекта. rm – единичный вектор, определяющий положение текущей точки в системе координат объекта. RM – определяет положение точки М в системе координат объекта относительно системы координат сканера.

Русский

2014-11-07

81.5 KB

0 чел.

СВЯЗЬ КООРДИНАТ ТОЧЕК МЕСТНОСТИ И ИХ ИЗОБРАЖЕНИЙ НА СКАНЕРНЫХ СНИМКАХ

OXYZ – система координат объекта. SXYZ – система координат сканера. RSi – вектор, определяющий положение центра проекции i-й строки в системе координат объекта. rm – единичный вектор, определяющий положение текущей точки в системе координат объекта. RM – определяет положение точки М в системе координат объекта относительно системы координат сканера.

Задача: найти RM. Известны координаты r в системе координат сканера.

(1)

R – вектор, коллинеарный r.

(2)

D – расстояние от центра проекции до точки M. Подставим (2) в (1).

(3)

Запишем (3) в координатной форме:

(4)

Выразим D из третьего уравнения и подставим в первые два. Получим:

          где             (4)

Xsi, Ysi, Zsi – значения линейных элементов внешнего ориентирования съемочной системы в момент получения изображения i строки снимка.

Ai, ωi, αi, æi - матрица поворота и соответствующие ей углы наклона и поворота системы координат сканера в момент формирования i строки изображения.

По координате xс мы определяем время формирования изображения i строки снимка.

Если используется камера с несколькими линейками, то:

, или    (5)

Если при съемке элементы внешнего ориентирования сканера неизвестны или известны с недостаточной точностью, обработку снимков производят в 2 этапа:

1. По опорным точкам определяют значения элементов внешнего ориентирования сканера в момент формирования изображения начальной строки и закон изменения этих элементов во времени;

2. По формулам (4) определяют координаты точек местности.

Эта методика подходит только для космических снимков, т. к. траекторию движения аппарата в космосе легко смоделировать.

  1.  Для каждой опорной точки записывают уравнение коллинеарности:

,       где      ,  а    (6)

       

        (7)

– значения элементов внешнего ориентирования сканера в момент формирования первого строки снимка;

k1,…..k6 – коэффициенты, характеризующие закон изменения элементов внешнего ориентирования сканера во времени;

         (8)

ti -  время получения i- й строки изображения, to  - время получения первой строки изображения. Эти величины определяются по измерениям xc точек на сканерном изображении.

Уравнения (7) характеризуют линейный закон изменения элементов внешнего ориентирования сканера в зависимости от времени. Возможна другая модель изменения ЭВО сканера, например полином второй степени:

        (9)

Коэффициенты d будут описывать ускорение изменения ЭВО сканера.

Каждая опорная точка дает возможность составить 2 уровня (6). Для определения неизвестных значений элементов внешнего ориентирования сканера в момент формирования первой строки Xso….κo и коэффициентов k1k6 необходимо измерить min 6 опорных точек для составления 12 уравнений. Если еще необходимо определить di (ускорение), то необходимо 9 опорных точек.

При решении обратной засечки по сканерному изображению для равнинной территории возникает неопределенность (множественность) решения задачи определения элементов внешнего ориентирования сканера для всех его положений в пространстве XSo XSi (рис.8).

Для избежания этого эффекта следует зафиксировать один из элементов : XSo, ZSo, αo. При космической съемке лучше зафиксировать высоту фотографирования ZSo .

   

Рис.8

После решения обратной засечки определение координат точек местности осуществляется по формулам (4).


So

i


 

А также другие работы, которые могут Вас заинтересовать

26058. Схемы интегральных счётчиков 15.75 KB
  Микросхема К155ИЕ2 имеет кроме того входы установки в состояние 9 при котором первый и последний разряды устанавливаются в 1 а остальные в 0 то есть 10012=9. Десятый импульс переводит триггеры МС в состояние при котором на выходах 4 и 6 МС формируются лог. Адресные дешифраторы строк ДШx и столбцов ДШy формируют сигналы выборки на соответствующих АШ которые определяют строку и столбец накопителя в котором расположен выбираемый ЭП. Если при этом сигнал на входе то СУ формирует управляющий сигнал при котором ФЗС обеспечивает...
26059. Динамическая память 17.76 KB
  В зависимости от типа ПЗУ занесение в него информации производится или в процессе изготовления или в эксплуатационных условиях путем настройки предваряющей использование ПЗУ в вычислительном процессе. В последнем случае ПЗУ называются постоянными запоминающими устройствами с изменяемым в процессе эксплуатации содержимым или программируемыми постоянными запоминающими устройствами ППЗУ. Функционирование ПЗУ можно рассматривать как выполнение однозначного преобразования kразрядного кода адреса ячейки запоминающего массива ЗМ в nразрядный...
26060. Логические элементы 14.44 KB
  МОВ логических элементах на МОПтранзисторах используется два типа транзисторов: управляющие и нагрузочные. Логические элементы на МОПтранзисторах Существенным преимуществом логических элементов на МОПтранзисторах перед логическими элементами на биполярных транзисторах является малая мощность потребляемая входной цепью. Кроме того выходное сопротивление у открытого МОПтранзистора больше чем у биполярного что увеличивает время заряда конденсаторов нагрузки и ограничивает нагрузочную способность ЛЭ. Микросхемы КМОПструктуры...
26061. Асинхронные и синхронные триггеры. Способы управления триггеров 14.12 KB
  С Особенностью синхронного триггера является то что ввиду наличия в схеме управления инвертирующих элементов происходит изменение исполнительного значения управляющих сигналов по сравнению с асинхронными. Применение синхронизации не устраняет неопределённое состояние триггера возникающее при одновременной подаче единичных сигналов на все три входа. Поэтому условием нормального функционирования является следующее неравенство: SRC ≠ 1 Кроме трёх основных входов синхронные RSтриггеры снабжаются ещё входами асинхронной установки состояния...
26062. Катаболизм и анаболизм. Биологическое значение основных метаболических путей (гликолиз, цикл трикарбоновых кислот, расщепление и синтез жирных кислот) 15.72 KB
  При катаболизме происходит расщепление и окисление в результате чего извлекается энергия из расщепившихся макромолекул. На первом этапе идут 2 необратимых реакции в результате чего тратится 2 мол АТФ. В результате этого этапа образуется 2 мол НАДНН и 4 мол АТФ. Конечным продуктом является 2 мол ПВК.
26063. Липиды 14.89 KB
  Липидынизкомолекулярные оргие соедия полностью или почти полностью нерастворимые в воде. Биологические фии липидов: 1 Структурная липиды в виде комплекса с белками являются стрми элементами мембран клеток. Классификация липидов: 1Простые липиды ацилглицеролы воска. 2Сложные липиды фосфолипиды гликолипиды стероиды.
26064. Макромолекулы как основа организации биологических структур 23.39 KB
  Первичная структура линейная. Вторичная структура. Структура полипептидной цепи спирализована неполностью. Такие параллельно расположенные участки структура конфигурация представляет собой складчатую структуру которая включает параллельные цепи связанные водородной связью.
26065. Нуклеиновые кислоты, основные типы, физ-хим 14.65 KB
  Сущт несколько форм ДНК Bформаправозакрученная длина полного витка 34 ангстрема ширина 20 А полный виток спирали10 пар нуклеотидов. Аформа: 11 пар оснований в витке угол наклона 20 Сформа9. Третичная формаукладка в прве. Исходная кольцевая форма у бактерий хлоропластов митох.
26066. Углеводы, их биологическая роль, классификация 12.82 KB
  Классификация: Простые сахарамоносахды их производные; Сложные сахараолигосахариды и полисахариды. Моносахаридыальдозы и кетозы. Олигосахаридыуглеводы молекулы которых содержат 210 моносахаридных остатков. Среди них различают гомополисахды из остатков 1 моносахда гетерополисахдыиз остатков разных моносахдов.