71442

Построение и уравнивание маршрутной и блочной фототриангуляции по методу независимых моделей

Доклад

Экономическая теория и математическое моделирование

Затем определяют элементы внешнего ориентирования каждой модели в системе координат объекта и определяют координаты точек сети в системе координат объекта. Определение элементов внешнего ориентирования фотограмметрических моделей в системе координат объекта производят следующим образом.

Русский

2014-11-07

140.5 KB

1 чел.

Построение и уравнивание маршрутной и блочной фототриангуляции по методу независимых моделей

В этом методе маршрутная и  блочная фототриангуляция строится следующим образом. Сначала по всем смежным (соседним) снимкам в каждом маршруте строятся фотограмметрические модели. Затем определяют элементы внешнего ориентирования каждой модели в системе координат объекта и определяют координаты точек сети в системе координат объекта.

Определение элементов внешнего ориентирования фотограмметрических моделей в системе координат объекта производят следующим образом.

Для каждой связующей точки (находящейся в зоне тройного перекрытия снимков или в межмаршрутном перекрытии) измеренной в двух моделях составляют уравнения:

в которых:

а Xi,Yi, Zi и Xj, Yj, Zj – координаты связующей точки в системе координат объекта в i и j моделях.

Для каждой опорной точки измеренной на модели составляются уравнения:

Если при аэрофотосъемке с помощью системы GPS определялись координаты центров проекций снимков Xsk,Ysk,Zsk в системе координат объекта, то для каждого центра проекции составляются уравнения:

В уравнениях Xskмi,Yskмi,Zskмi – координаты центра проекции k-го снимка в системе координат i-ой модели.

Уравнения поправок соответствующие уравнениям (1.4.1) имеют вид аналогичный уравнениям поправок (1.3.3), а уравнения поправок соответствующие уравнениям (1.4.2) и (1.4.3) имеют вид аналогичный уравнениям поправок (1.3.4) (см. раздел 1.3).

В результате решения полученной системы уравнений поправок по методу наименьших квадратов находят уравненные значения элементов внешнего ориентирования всех моделей в системе координат объекта.

Необходимо отметить, что если при аэрофотосъемке были определены с помощью системы GPS координаты центров проекций снимков, то можно построить и уравнять блочную сеть без использования опорных точек на земной поверхности. При построении и уравнивании маршрутной сети необходима, по крайней мере, одна опорная точка.

Это связано с тем, что центры проекции, являющиеся в данном случае опорными точками расположены практически на одной прямой. 

По определенным значениям элементов внешнего ориентирования моделей определяют координаты точек сети в системе координат объекта:

Для точек сети и центров проекций снимков, координаты которых были определены по нескольким моделям, в качестве окончательного значения берутся средние значения этих координат.

Значения элементов внешнего ориентирования снимков, определяются следующим образом.

Координаты центров проекции вычисляют по формулам:

                (1.4.5)


          Угловые элементы внешнего ориентирования снимков  определяют в два этапа.

 Сначала находят матрицу преобразования координат снимка по формуле:

                                             (1.4.6)

      

где  – матрица поворота, определяющая угловую ориентацию системы координат снимка Sxyz относительно системы координат модели OMYMXMZM; АМ – матрица поворота, определяющая угловую ориентацию системы координат модели OMYMXMZM относительно системы координат объекта OYXZ.

В формуле1.4.6:

- матрица преобразования координат, элементы   которой являются функцией угловых элементов взаимного ориентирования    - го снимка.

- матрица преобразования координат, элементы   которой являются функцией угловых элементов внешнего ориентирования модели ;

По значениям элементов матрицы А вычисляют значения угловых элементов внешнего ориентирования снимка:

                             .            (1.4.7)

Элементы внешнего ориентирования снимков можно определить и из решения обратных засечек по координатам точек сети, определенным в системе координат объекта, и координатам их изображений, измеренных на снимке.

В случае если координаты центров проекций были определены с помощью системы GPS, то определяют только угловые элементы внешнего ориентирования снимков . При этом уравнения поправок для обратной засечки примут вид:

Общее количество неизвестных, определяемых при построении сети можно определить по формуле:

          

где    n – количество независимых моделей.

Общее количество уравнений поправок можно определить по формуле:

                                                             

где      m – количество связующих точек на смежных стереопарах;

k - количество планово-высотных опорных точек измеренных на моделях;

i - количество плановых опорных точек измеренных на моделях;

l – количество высотных опорных точек измеренных на моделях;

j – количество уравнений поправок составленных для центров проекций, определенных с помощью системы GPS.( j = 6n, где n – количество независимых моделей.)

Для сети изображенной на рис. 1.4.1 состоящей из двух маршрутов, в каждом из которых 4 снимка (3 стереопары):

,

Если при этом координаты центров проекций были определены системой GPS, то дополнительно составляют j уравнений поправок:

        Таким образом, M=114.

Рис. 1.4.1

     - главная точка снимка;

- точка сети;

           - планово-высотная точка;

 m       - количество связующих точек на смежных   моделях;

           - количество планово-высотных опознаков, измеренных на моделях.


 

А также другие работы, которые могут Вас заинтересовать

2129. Симметричные вибраторы как специфические виды антенн 2.51 MB
  Распределение тока на симметричном вибраторе. Симметричный вибратор с емкостной нагрузкой на концах. Распределение напряжения по симметричному вибратору. Поле излучения симметричного вибратора. Резонансная длина вибратора. Основные методы настройки симметричных вибраторов.
2130. Анализ деятельности рельсобалочного цеха (РБЦ) ОАО МК 1.14 MB
  Проверка мощности главных двигателей стана. Сортамент готовой продукции цеха и исходной заготовки. Краткая характеристика основного и вспомогательного оборудования цеха. Расчет усилия прокатки при прокатке швеллера. Технологический процесс производства фасонных профилей из заготовки проката.
2131. Теорія та методологія географічної науки 3.84 MB
  Сучасні інформаційні технології як людський капітал. Прикладне і конструктивне значення географічних знань. Дискретні форми географічного простору. Субстанційний, реляційний і конвенціальний час.
2132. Предмет и задачи биофизики как науки. Ее теоретические аспекты 3.54 MB
  Методы биофизических исследований. Искусственные липидные мембраны. Кинетика процессов переноса, происходящих с преодолением потенциального барьера. Пассивный транспорт веществ через биологические мембраны. Испускание энергии атомами и молекулами. Модель мышечного сокращения Дещеревского.
2133. Бегуны для переработки кусковых, порошкообразных и волокнистых материалов 186.87 KB
  Общие требования к курсовому проектированию по механическому оборудованию предприятий строительной индустрии. Конструкции и принцип действия бегунов. Области рационального использования.
2134. Валковые агрегаты для измельчения и переработки материалов 213.28 KB
  ОБЩИЕ ТРЕБОВАНИЯ К КУРСОВОМУ ПРОЕКТИРОВАНИЮ ПО МЕХАНИЧЕСКОМУ ОБОРУДОВАНИЮ ПРЕДПРИЯТИЙ СТРОИТЕЛЬНОЙ ИНДУСТРИИ. КОНСТРУКЦИЯ И ПРИНЦИП ДЕЙСТВИЯ. РАСЧЕТ ОСНОВНЫХ ПАРАМЕТРОВ.
2135. Машины для перемешивания материалов. Смесители периодического действия 226.55 KB
  Расчет основных параметров смесителей периодического действия. Смесители периодического действия для перемешивания жидких масс. Лопастные и горизонтальные смесители. Гравитационные бетоносмесители циклического типа. Бетоносмесители планетарные.
2136. Старославянский язык. Конспекты 349.08 KB
  Руководство по старославянскому языку. Древнерусская грамматика. История древнерусского языка. Введение в историческую фонологию.
2137. Пользовательский интерфейс для прикладных задач 351.24 KB
  Параллельные вычисления и удаленный доступ. Язык Норма, вопросы безопасности. Структура интерфейса, локальные и удаленные ресурсы. Средства реализации интерфейса.