71448

Точность определения координат точек объекта по стереопаре снимков

Доклад

География, геология и геодезия

Для предрасчета точности определения координат точек местности по стереопаре аэрофотоснимков учитывая что углы наклона снимков не превышают 1 3 а базис фотографирования практически горизонтален воспользуемся формулами связи координат точек местности и координат...

Русский

2014-11-07

44 KB

4 чел.

Точность определения координат точек объекта по стереопаре снимков.

Для предрасчета точности определения координат точек местности по стереопаре аэрофотоснимков, учитывая, что углы наклона снимков не превышают 1°- 3°, а базис фотографирования практически горизонтален, воспользуемся формулами связи координат точек местности и координат их изображений на стереопаре снимков идеального случая съемки (1.8.4):

.        (1.8.4)

Сначала получим среднюю квадратическую ошибку определения высоты точки Z местности. Для этого продифференцируем третью формулу выражения (1.8.4) по аргументу р.

.

Заменим величину р на b – базис в масштабе снимка.

Рис.1.16.1

О1и О2 – главные точки снимка.

В результате получим .

Перейдя к средним квадратическим ошибкам, получим формулу:

.         (1.16.1)

Для получения средних квадратических ошибок определения координат Х и Y точки местности продифференцируем первые две формулы выражения (1.8.4) по аргументам x, y, Z и перейдем к средним квадратическим ошибкам.

В результате получим

.     (1.16.2)

В качестве примера вычислим  величины mX, mY и mZ точек местности, определенных по стереопаре снимков масштаба 1:5000, полученной АФА с f =150 мм и форматом кадра 23х23 см, с продольным перекрытием 60%.

Будем считать, что на стереопаре снимков точки были измерены с ошибками . В этом случае высота фотографирования , а базис фотографирования в масштабе снимка

.

Средние квадратические ошибки определения координат точки местности, вычисленные по формулам (1.16.1) и (1.16.2) будут равны:

.



 

А также другие работы, которые могут Вас заинтересовать

20144. Методы исследовательских испытаний на надёжность 27 KB
  для исследования надёжности приборов значение имеют неразрушающие методы испыт: метод акустической эмиссии кот. методы базир. методы базир. методы ультразвук.
20145. Определение оптимального уровня надежности 324.5 KB
  С=СрСпСэ Ср затраты на разработку; Сп затраты на производство; Сэ затраты на эксплуатацию. Из приведенного графика видно что с ростом безотказной работы увеличиваются затраты на эксплуатацию.
20146. ПРЯМАЯ И ОБРАТНАЯ ЗАДАЧА ТЕОРИИ ТОЧНОСТИ 34 KB
  Многообразие направлений рассмотрения вопросов точности измерительных устройств в значительной мере определяющих погрешность измерения можно отнести к трем стадиям: Проектирование Производство Эксплуатация При проектировании осуществляется обеспечение точности при котором решаются прямая или обратная задача теории точности. Задачи теории точности: Прямая задача синтеза выбор структуры устройства определение номинальных значений параметров пределов их допустимых значений номинальных отклонений т. Изучение методов решения прямой и...
20147. Однокоординатные механические приборы, работающие по принципу сравнения со штриховой мерой 125 KB
  Объединяет все штангенприборы единая конструкция отсчетных устройств основанных на применении линейного нониуса. Принцип действия нониуса состоит в совмещении соответствующих штрихов двух линейных шкал интервалы деления которых отличаются на определенную величину. Конструкция нониуса использует то обстоятельство что невооруженный человеческий глаз не способный непосредственно количественно оценивать малые значения несовмещения штрихов в то же время способен фиксировать наличие весьма малых смещений двух штрихов от их симметричного...
20148. Оптико-механические однокоординатные приборы, работающие по принципу сравнения со штриховой мерой 696.5 KB
  Длинномеры Окулярные длинномеры Спилярный окулярный микрометр В спиральном окулярном микрометре вместо микрометрической пары используется спиральная сетка с помощью которой определяются доли интервалов основной шкалы. Отсчетная часть Поток лучей от источника 1 с изображением штрихов основной шкалы 6 проходит объектив 7 проходит неподвижную пластину 8 со шкалой имеющей интервал 01мм. В месте изображения штрихов основной шкалы 6 и неподвижной шкалы 8 круговой шкалы 10 и витков двойной спирали поток лучей попадает в окуляр 11. В эту...
20149. Электрические и оптоэлектронные приборы, работающие по принципу сравнения со штриховой мерой 138.5 KB
  Длинномеры с аналоговым преобразованием. Длинномеры обеспечивают дискретность перемещения порядка 001002 мм за счет электронного интерполирования. Для линейных измерений преимущественное применение находят дифференциальные индуктивные длинномеры. Такие длинномеры содержат уже 2 сердечника 1 и 2 которые смещены относительно друг друга на величину Т 22к1 где к=1234 Тогда при перемещении якоря 3 относительно сердечников полное сопротивление Z и Zкатушек будут изменяться по закону близкому к синусоидальному причем эти зависимости...
20150. Однокоординатные механические приборы, работающие по принципу сравнения с концевой мерой 285 KB
  i=l2 l1 зубчатые головки шаг t=πm радиус R=mz 2 i=z2 z12Rстр mz3 погрешность колеблется 816 мкм. Если растягивать ленточку сечением 8x100 мкм на 1 мкм то стрелка повернётся на 30; если 5x80 мкм то на 70. Стрелочка стеклянная трубочка у основания 60 мкм а у вершины 20 мкм на конце находится стрелочный указатель из алюминиевой фольги. Погрешность приборов: 08 мкм.
20151. Оптико-механические однокоординатные приборы работающие по принципу сравнения с концевой мерой 73 KB
  Методы исследовательских испытаний на надёжность. для исследования надёжности приборов значение имеют неразрушающие методы испыт: метод акустической эмиссии кот. методы базир. методы базир.
20152. Оптические однокоординатные приборы, работающие по принципу сравнения с концевой мерой 123.5 KB
  Последний может поворачиваться на оси 9 обеспечивая возможность наблюдения необходимого участка шкалы через середину окуляра при минимальных оптических искажениях. При освещении белым светом на фоне шкалы видна одна черная ахроматическая полоса и по обе стороны от нее несколько окрашенных полос убывающей интенсивности. Интерференционные полосы при освещении монохроматическим светом используются для определения цены деления шкалы прибора и для его поверки. Для получения необходимой цены деления с задаются к интерференционных полос и...