71464

Создание цифрового ортофототрансформированного снимка

Доклад

Экономическая теория и математическое моделирование

Принципиальная схема цифрового ортофототрансформированния снимков представлена на рис.8 Исходными материалами при цифровом ортофототрансформировании снимков служат: цифровое изображение исходного фотоснимка; цифровая модель рельефа в большинстве случаев используется...

Русский

2014-11-07

99.5 KB

2 чел.

Создание цифрового ортофототрансформированного снимка

  В результате цифрового ортофототрансформирования исходный снимок преобразуется в цифровое изображение местности, представляющее собой ортогональную проекцию местности на горизонтальную плоскость.

Принципиальная схема цифрового ортофототрансформированния снимков представлена на рис.1.8.

Рис.1.8

Исходными материалами при цифровом ортофототрансформиро- вании снимков служат:

  •  цифровое изображение исходного фотоснимка;
  •  цифровая модель рельефа (в большинстве случаев используется регулярная сетка ЦМР в виде сетки квадратов на местности);
  •  значение элементов внутреннего и внешнего ориентирования снимков;
  •  значение параметров внутреннего ориентирования снимка в системе координат цифрового изображения.

Создание цифрового ортофотоснимка выполняется следующим образом.

Сначала формируется прямоугольная матрица цифрового ортофотоснимка, строки и столбцы которой параллельны осям X и Y 

геодезической системы координат, а координаты одного из углов матрицы заданы в этой же системе координат. Размер элементов (пикселов) матрицы обычно выбирают приблизительно равными величине ×m, в которой:

- - размер пиксела цифрового изображения исходного снимка;

- m - знаменатель среднего масштаба снимка.

Значения координат угла создаваемой матрицы выбирают кратными величине элементов матрицы.

Для формирования цифрового ортофотоснимка, каждому элементу цифрового изображения aij необходимо присвоить оптическую плотность изображения соответствующего участка местности на исходном цифровом снимке. Эта операция выполняется следующим образом. По значениям индексов i и j элементов матрицы aij  определяются координаты X, Y центра соответствующего пиксела цифрового ортофотоснимка в

геодезической системе координат.

По координатам Xi, Yi точки местности, соответствующей центру пиксела, по цифровой модели рельефа определяется геодезическая высота этой точки Zi.

Определение значения Zi выполняется методом билинейного интерполирования (рис.1.9).

 

Рис.1.9

На рис.1.9  X = Xi - X1, а Y= Yi - Y1, где X1 и Y1 - координаты узла 1 цифровой модели рельефа.

Высота точки Zi вычисляется по формуле:

,                  (1.21)

в которой:

.

По координатам Xi, Yi, Zi и значениям элементов внутреннего и внешнего ориентирования снимка вычисляются координаты х,у соответствующей точки на исходном цифровом снимке в системе координат снимка Sхуz.

Вычисления производятся по формулам:

,    (1.22)

в которых

.

По координатам х,у и значениям параметров внутреннего ориентирования цифрового изображения определяют координаты точки снимка в системе координат цифрового изображения осхсус.

В случае использования аффинных преобразований при выполнении внутреннего ориентирования, определение координат выполняется по формулам:

Затем по координатам хС и уС вычисляются пиксельные координаты точки  

.

   По значениям пиксельных координат xp,yp точки цифрового изображения снимка, являющимся проекцией центра пиксела матрицы цифрового ортофотоснимка, находят ближайшие к этой точке четыре пиксела цифрового изображения снимка и методом билинейной интерполяции, изложенном в разделе 1.1, по формулам (1.7) определяют значение оптической плотности Di или цвета, присваемого соответствующему пикселу матрицы цифрового ортофотоснимка. При этом значение величин Dхp,Dyp определяют по формулам:

.

  Таким же образом определяются оптические плотности и цвет всех остальных пикселов цифрового ортофотоснимка.

  Помимо метода билинейной интерполяции для формирования цифрового ортофотоснимка применяют метод “ближайшего соседа”, в котором по пиксельным координатам xp,yp находят пиксел

цифрового изображения снимка, на который проектируется точка, соответствующая центру пиксела цифрового ортофотоснимка, и значение его оптической плотности или цвета присваивается пикселу цифрового ортофотоснимка.

   Метод “ближайшего соседа” позволяет сократить время формирования цифрового ортофотоснимка по сравнением с методом билинейной интерполяции, однако изобразительные свойства формируемого цифрового ортофотоснимка при этом ухудшаются


 

А также другие работы, которые могут Вас заинтересовать

21814. ТЕОРИЯ МАТРИЧНЫХ ИГР. ИГРА С ПРИРОДОЙ 91.5 KB
  Системный анализ источников техногенной опасности 1. СИСТЕМНЫЙ АНАЛИЗ ИСТОЧНИКОВ ТЕХНОГЕННОЙ ОПАСНОСТИ Системный анализ источников и факторов техногенной и экологической опасности может быть проведен на основе методологических принципов заимствованных из теории подготовки и обоснования решений по сложным проблемам. Системный анализ совокупности источников техногенной опасности целесообразно проводить с учетом определенного множества факторов в том числе факторов радиационной химической природы экономических...
21815. Козацтво в історії України (друга половина ХVІІ – ХVІІІ ст.) 115.5 KB
  Соціальні причини. До середини XVII ст. вкрай загострилася соціально-економічна ситуація, повязана з трансформацією поміщицьких господарств у фільварки. З одного боку, це сприяло зміцненню феодальної земельної власності
21816. ОСНОВНЫЕ СОСТАВЛЯЮЩИЕ, ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ СИСТЕМНОГО АНАЛИЗА 171 KB
  Структура и иерархия системы 1. Второе направление связано с разработкой принципов построения и использования моделей моделирования имитирующих протекание реальных процессов способов объединения таких моделей в системы и представление системы моделей в ЭВМ. Действительно что такое система обеспечения безопасности Это совокупность людей оборудования и процедур специально разработанная применительно к промышленной или любой другой трудовой системы для увеличения безопасности работников. Элементом системы называется некоторый объект...
21817. Реализация системного анализа при решении проблем техносферы. Краткая характеристика методов СА 111.5 KB
  Показатели системы Методология системного анализа Постановка задачи Моделирование и анализ Оценка возможных вариантов решения краткая характеристика методов СА В последние годы методы СА стали широко использоваться для решения таких проблем окружающей среды и общества как:  загрязнение окружающей среды;  производственная безопасность;  транспортные потоки;  медицинское обслуживание;  образование;  криминалистика. Можно ли все это свести к определению одного параметра с помощью которого мы будем сравнивать возможные решения Вначале...
21818. Оценка вариантов решения. Выбор 92 KB
  Выбор как реализация цели В предыдущей лекции были рассмотрены два этапа задачи разработки программы системы. Таким образом важную роль здесь играет измерение переменных системы. Кратко можно перечислить следующие операции выполняемые на этапе оценки вариантов решения: определение меры для каждого показателя системы; объединение всех показателей в единое представление или функцию по которым можно выбрать наиболее желательное решение так называемую целевую функцию. Целевой функцией называется скалярное описание системы которое...
21819. Условная оптимизация 169 KB
  Пример постановки задачи оптимизации Линейное программирование ЛП Постановка задачи линейного программирования Основные определения и теоремы Переход от одной формы задачи ЛП к другой 3. Пример постановки задачи оптимизации Для изготовления 3х видов изделий А В и С используется токарное фрезерное сварочное и шлифовальное оборудование. Составить математическую модель задачи. Постановка задачи линейного программирования Найти оптимум наибольшее или наименьшее значение целевой функции линейной формы на области допустимых значений...
21820. Нелинейное программирование (НП) 131 KB
  нелинейное программирование НП Постановка задачи НП Экологоэкономическая интерпретация задачи НП Геометрическая интерпретация задачи НП Метод множителей Лагранжа ММЛ Обзор рассмотренных методов. Постановка задачи НП В общем виде задача НП состоит в определении max min значения f x1 x2 xn 1 при условии что ее переменные удовлетворяют соотношениям gix1 x2 xn  bi i = 1 k gix1 x2 xn = bi i = k 1 m где f и gi некоторые известные функции n переменных а bi заданные числа. Имеется в виду что в...
21821. ВЫБОР АЛЬТЕРНАТИВ В МНОГОКРИТЕРИАЛЬНЫХ ЗАДАЧАХ 234 KB
  Выбор в условиях нескольких критериев. Например выбор конструкции самолета предполагает учет многих критериев технических высота скорость маневренность грузоподъемность безопасности полетов технологических экологических экономических эргономических. Итак пусть для оценивания альтернатив используется несколько критериев qix i= 123. Теоретически можно представить себе случай когда во множестве Х окажется одна альтернатива обладающая наибольшими значениями р всех критериев; она и является наилучшей.
21822. Возведение зданий системы «КУБ» 55 KB
  Каркас универсальный безбалочный КУБ представляет собой систему многоярусных колонн установленных в фундаменты стаканного типа и объединённых с помощью разрезных бескапительных плит перекрытия. Система КУБ используется для возведения жилых и промышленных зданий высотой до 16 этажей сейсмостойкость 9 баллов сетка колонн 69м высота этажа 2833м. Расчётная схема системы КУБ представляет собой связевый каркас в котором вертикальные нагрузки перекрытий передаются на колонны воспринимающие продольные силы с изгибом в одном или...