7148

Основное уравнение передачи по световоду

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Основное уравнение передачи по световоду. Рассмотрим волоконный световод без потерь двухслойной конструкции, приведенный на рис...

Русский

2013-01-17

81 KB

7 чел.

Основное уравнение передачи по световоду.

Рассмотрим волоконный световод без потерь двухслойной конструкции, приведенный на рис. 1

  

                                             b

                       n2  n1          a

                           Рис. 1

Для описания поведения электромагнитного поля в сердечнике (0<r<a) и в оболочке (a<r<b) необходимо использовать различные функции. Исходя из физической сущности процессов, функции внутри сердечника при r=0 должны быть конечными, а в оболочке описывать спадающее поле.

Для определения основных параметров световодов (критической частоты, волнового числа , скорости передачи и др.) воспользуемся основными уравнениями электродинамики - уравнениями Максвелла, которые для диэлектрических волноводов имеют вид:

                                        (1)

Уравнения Максвелла справедливы для любой системы координат. Для направляющих систем эти уравнения наиболее часто применяются в цилиндрической системе координат, ось Z которой совместим с оптической осью световода:

                  (2)

Для решения инженерных задач электродинамики необходимо знать продольные составляющие полей Еz и Hz.  Их можно получить следующим образом. Преобразуем первое из уравнений Максвелла (1) к виду

.

Тогда, используя соотношение  , а также учитывая, что divH=0, получим

,

где - волновое число световода.

Поступая аналогично со вторым уравнением Максвелла (2), получим   .

Отсюда следует, что продольные электромагнитные составляющие векторов Ez и Hz удовлетворяют уравнениям

Где  -  оператор Лапласа.

,

Тогда для продольных составляющих Ez и Hz в цилиндричееской системе координат получим дифференциальные уравнения второго порядка:

            (3)

Допустим, что напряженность электромагнитного поля в направлении оси Z меняется по экспоненциальному закону, т.е. , где А - любая составляющая векторов Е или Н; j- коэффициент распространения. Тогда первая и вторая производные определятся

.

Для составляющей Еz

.  

Подставляя полученное значениe в уравнения (3), получим

Введем обозначение  - поперечное волновое число световода.  Тогда для сердечника световода имеем

          (4)

где  (без учета затухания) - поперечное волновое число сердечника; k1 - волновое число сердечника с коэффициентом преломления n1,  .

Решение уравнений (4) для сердечника следует выразить через цилиндрические функции первого рода - функции Бесселя, имеющие конечные значения при r=0. Поэтому можно написать

                 (5)

где Аn и Вn - постоянные интегрирования.

Воспользовавшись уравнениями (2), рассмотрим связь между поперечными и продольными компонентами поля. В частности, для составляющей Еr имеем

 

Возьмем производную от второго выражения по

Учитывая, что , а  , то

Тогда

   или  

Подставим данное выражение в уравнение для Еr

 или

.

Окончательно получим       .

Аналогично можно установить связь между продольными и другими поперечными компонентами поля

Воспользовавшись уравнениями (5) возьмем соответствующие производные

Тогда выражения для поперечных составляющих электрического и магнитного полей в сердечнике световода, полагая, что , имеют вид (множитель не пишем):

      (6)

Для оболочки имеем аналогичную систему уравнений:

где  (без учета затухания) - поперечное волновое число оболочки световода; k2 - волновое число оболочки с коэффициентом преломления n2, .

Для решения данных уравнений, исходя из условия, что при  поле должно стремиться к нулю, следует использовать цилиндрические функции третьего рода - функции Ганкеля:

где Сn , Dn - постоянные интегрирования.

Тогда для поперечных составляющих поля в оболочке можно написать следующие выражения:

     (7)

Постоянные интегрирования Аn, Вn, Сn, Dn могут быть определены на основании граничных условий. Используем условия равенства тангенциальных составляющих напряженностей электрических и магнитных полей на поверхности раздела сердечник-оболочка (при r=а):

               

               

Найдя постоянные интегрирования и подставив их в уравнения, после соответствующих преобразований получим следующее трансцендентное уравнение:

 (8)

Полученные уравнения дают возможность определить неизвестные постоянные и найти структуру поля в сердечнике и оболочке волоконного световода. В общем случае уравнения имеют ряд решений, каждому из которых соответствует определенная структура поля, называемая типом волны или модой.


 

А также другие работы, которые могут Вас заинтересовать

40889. Рівняння Максвела для Т, ТЕ, ТМ хвиль 388 KB
  Т хвиля розповсюджується зі швидкістю світла . хвиля розповсюджується в напрямку хвиля існує там де є розвязок рівняння Лапласа електрика. Тому якщо існує електростатичне поле то може існувати і Т хвиля.
40890. Прямокутний хвильовід 139.5 KB
  Для хвилі завдяки граничним умовам на стінках , а по певній координаті (там, де індекс = 0 ) це поле однорідне, тоді буде всюди, тобто цієї хвилі не буде.
40891. Хвильовий опір хвильовода 164 KB
  Рівняння для Т, ТЕ, ТМ хвиль різні. Щоб звести їх до одного виду, використовуючи потенціали , , де - електрична скалярна функція, - магнітна скалярна функція. Якщо для Т – хвилі завжди, то , а перетворюється в нуль завдяки .
40892. Коаксіальна лінія 412.5 KB
  Таким чином, можна перетворити межу циліндричної області в межу плоскої. Тому й область перетворюється в область . Розв’язок задачі в плоскому конденсаторі:має вигляд: . Поклавши (скориставшись тим, що потенціал визначається з точністю до константи), маємо: . Скориставшись зворотнім перетворенням, одержимо:
40893. Лінії передач для інтегральних схем 207 KB
  Складність розв’язання цієї задачі полягає в тому, що граничні умови тут – нерегулярні; не можна покласти, що на поверхні. Використовують наближені методи; зокрема конформних відображень.
40894. Реальний смушковий несиметричний хвильовід 149.5 KB
  У попередній задачі ми нехтували всіма розмірами – розглядали ідеальний випадок. Тепер розглянемо реальний: скористаємося тими самими моделями: нехай розповсюджується Т – хвиля, а ми розглядаємо одну половину (симетрія).
40895. ФОРМИ БЕЗПОСЕРЕДНЬОЇ ДЕМОКРАТІЇ В УКРАЇНІ 199.5 KB
  Поняття і види форм безпосереднього народовладдя в Україні Вибори в Україні Референдуми в Україні Поняття і види форм безпосереднього народовладдя в Україні Чинна Конституція України визнала вперше не лише належність влади народу тобто володіння політичною владою як його природне право мати владу але і його право здійснювати владу. 5 Конституції України зазначається що право визначати і змінювати конституційний лад в Україні належить виключно народові і воно не може бути узурповане...
40896. Симетричний смушковий хвильовід 51 KB
  Тут менше аніж у попередній лінії оскільки ємність тут більша. Однак тут менше не в 2 рази оскільки у попередньому хвильоводі ємність враховувалась і до верхньої сторони верхньої смужки і до нижньої див. тому там ємність більша аніж у звичайному конденсаторі.
40897. Повільні хвилі 183.5 KB
  Непрямолінійний розповсюджувач меандр спіраль Для багатьох електричних приладів необхідно отримати хвилю, що рухається зі швидкістю . Це зокрема стосується приладів, у яких відбувається передача енергії та інформації від хвилі іншим носіям.