7148

Основное уравнение передачи по световоду

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Основное уравнение передачи по световоду. Рассмотрим волоконный световод без потерь двухслойной конструкции, приведенный на рис...

Русский

2013-01-17

81 KB

7 чел.

Основное уравнение передачи по световоду.

Рассмотрим волоконный световод без потерь двухслойной конструкции, приведенный на рис. 1

  

                                             b

                       n2  n1          a

                           Рис. 1

Для описания поведения электромагнитного поля в сердечнике (0<r<a) и в оболочке (a<r<b) необходимо использовать различные функции. Исходя из физической сущности процессов, функции внутри сердечника при r=0 должны быть конечными, а в оболочке описывать спадающее поле.

Для определения основных параметров световодов (критической частоты, волнового числа , скорости передачи и др.) воспользуемся основными уравнениями электродинамики - уравнениями Максвелла, которые для диэлектрических волноводов имеют вид:

                                        (1)

Уравнения Максвелла справедливы для любой системы координат. Для направляющих систем эти уравнения наиболее часто применяются в цилиндрической системе координат, ось Z которой совместим с оптической осью световода:

                  (2)

Для решения инженерных задач электродинамики необходимо знать продольные составляющие полей Еz и Hz.  Их можно получить следующим образом. Преобразуем первое из уравнений Максвелла (1) к виду

.

Тогда, используя соотношение  , а также учитывая, что divH=0, получим

,

где - волновое число световода.

Поступая аналогично со вторым уравнением Максвелла (2), получим   .

Отсюда следует, что продольные электромагнитные составляющие векторов Ez и Hz удовлетворяют уравнениям

Где  -  оператор Лапласа.

,

Тогда для продольных составляющих Ez и Hz в цилиндричееской системе координат получим дифференциальные уравнения второго порядка:

            (3)

Допустим, что напряженность электромагнитного поля в направлении оси Z меняется по экспоненциальному закону, т.е. , где А - любая составляющая векторов Е или Н; j- коэффициент распространения. Тогда первая и вторая производные определятся

.

Для составляющей Еz

.  

Подставляя полученное значениe в уравнения (3), получим

Введем обозначение  - поперечное волновое число световода.  Тогда для сердечника световода имеем

          (4)

где  (без учета затухания) - поперечное волновое число сердечника; k1 - волновое число сердечника с коэффициентом преломления n1,  .

Решение уравнений (4) для сердечника следует выразить через цилиндрические функции первого рода - функции Бесселя, имеющие конечные значения при r=0. Поэтому можно написать

                 (5)

где Аn и Вn - постоянные интегрирования.

Воспользовавшись уравнениями (2), рассмотрим связь между поперечными и продольными компонентами поля. В частности, для составляющей Еr имеем

 

Возьмем производную от второго выражения по

Учитывая, что , а  , то

Тогда

   или  

Подставим данное выражение в уравнение для Еr

 или

.

Окончательно получим       .

Аналогично можно установить связь между продольными и другими поперечными компонентами поля

Воспользовавшись уравнениями (5) возьмем соответствующие производные

Тогда выражения для поперечных составляющих электрического и магнитного полей в сердечнике световода, полагая, что , имеют вид (множитель не пишем):

      (6)

Для оболочки имеем аналогичную систему уравнений:

где  (без учета затухания) - поперечное волновое число оболочки световода; k2 - волновое число оболочки с коэффициентом преломления n2, .

Для решения данных уравнений, исходя из условия, что при  поле должно стремиться к нулю, следует использовать цилиндрические функции третьего рода - функции Ганкеля:

где Сn , Dn - постоянные интегрирования.

Тогда для поперечных составляющих поля в оболочке можно написать следующие выражения:

     (7)

Постоянные интегрирования Аn, Вn, Сn, Dn могут быть определены на основании граничных условий. Используем условия равенства тангенциальных составляющих напряженностей электрических и магнитных полей на поверхности раздела сердечник-оболочка (при r=а):

               

               

Найдя постоянные интегрирования и подставив их в уравнения, после соответствующих преобразований получим следующее трансцендентное уравнение:

 (8)

Полученные уравнения дают возможность определить неизвестные постоянные и найти структуру поля в сердечнике и оболочке волоконного световода. В общем случае уравнения имеют ряд решений, каждому из которых соответствует определенная структура поля, называемая типом волны или модой.


 

А также другие работы, которые могут Вас заинтересовать

3334. Дефектація корпусних деталей 106.5 KB
  Дефектація корпусних деталей Обладнання, інструмент. Корпус коробки переключення передач (КПП) трактора Т-170 18-2-156 СБ, стенд для кріплення корпуса, індикаторні нутроміри НИ 100-160, НИ 18-50, мікрометри МК 175-2, МК 150-2, МК 125-2, МК 25-2, шт...
3335. Відновлення деталей вібродуговим наплавленням 1.11 MB
  Відновлення деталей вібродуговим наплавленням Обладнання, інструмент. Наплавочна установка в комплекті: токарний верстат, наплавочна головка ОКС 6569, джерело живлення ВДУ-506, балон з вуглекислим газом, підігрівник, осушувач, редуктор, пульт керува...
3336. Дефектація валів, шестерень, підшипників 521 KB
  Дефектація валів, шестерень, підшипників Обладнання, інструмент. Перший проміжний вал коробки переключення передач трактора Т-170 18-12-132, мікрометри МК 75-2, МЗ 75-2, ролики діаметром 6 мм, ролики зі скосом кромок, різьбові кільця М 52 X 2...
3337. Відновлення деталей газополуменевим напиленням порошків 73.5 KB
  Суть процесу. Порошковий присаджувальний матеріал подається транспортувальним газом у зону полум'я, де обплавляеться і струменем горючих газів вино¬ситься на поверхню деталі. Порошкові суміші можуть подаватися і безпосередньо в полум'я пальника.
3338. Відновлення деталей наплавленням під шаром флюсу 1.02 MB
  Відновлення деталей наплавленням під шаром флюсу Обладнання, інструмент. Установка для наплавлення в комплекті: наплавочна головка А-580М, зварювальний перетворювач ПСО-500, верстат для установки головки, верстат для кріплення котка, щит розподільн...
3339. Оброблення деталей методом пластичного деформування 313.5 KB
  Оброблення деталей методом пластичного деформування. Обладнання, Інструмент. Токарно-гвинторізний верстат, набір накаток: кулькова жорстка, роликова жорстка і пружна, роликова для відновлення пружин, при стрій для кріплення пружин, твердомір Т...
3340. Відновлення деталей електролітичним хромуванням 81 KB
  Відновлення деталей електролітичним хромуванням Обладнання, інструмент. Хромувальна установка, джерело живлення, підвісні пристрої для деталей при хромуванні, ключі ріжкові 10 X 12; 12 X 14; 17 X 19, 22 X 24, мікрометр. МК 25-2, ...
3341. Анализ товарооборота и факторов, влияющих на его изменение 479 KB
  Введение В настоящие время главной целью торговых предприятий должно быть получение максимальной прибыли, при этом товарооборот выступает как важнейшее и необходимое условие, без которого не может быть достигнута эта цель. Поскольку торговое предпри...
3342. Модульные задания по 1 части курса физики 692 KB
  Физика является основой практически всех общеинженерных и специальных дисциплин. Глубокое знание физики необходимо студентам инженерно-педагогических специальностей, так как характер их будущей работы требует творческого отношения к делу, умения неп...